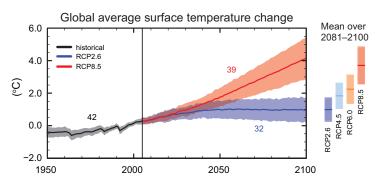
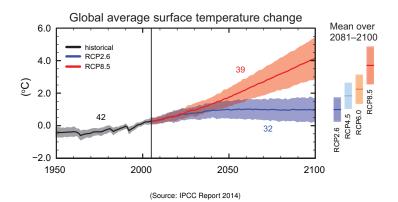
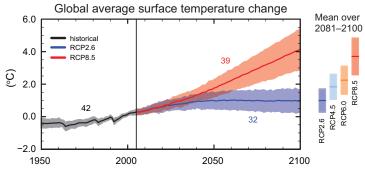
Temperature and Growth: A Panel Analysis of the United States

Ric Colacito


Bridget Hoffmann


Toan Phan


THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

(Source: IPCC Report 2014)

• Temperatures are expected to go up as much 4°C over next century

(Source: IPCC Report 2014)

- Temperatures are expected to go up as much 4°C over next century ٢
- Is there a link between rising temperatures and economic growth?

Existing literature

Evidence for

- developing countries: Dell, Jones and Olken (2012, 2014), Hsiang Burke (2013), Barrios, Bertinelli and Strobl (2010)
- U.S. agricultural output: Fisher Hanemann Roberts Schlenker (2012), Lybbert Smith Sumner (2013), Deschenes and Greenstone (2012)
- U.S. labor supply: Zivin and Neidell (2014)

• Answers this question for the United States' GDP

- Answers this question for the United States' GDP
- Employs a panel of US states' weather and GSP data

- Answers this question for the United States' GDP
- Employs a panel of US states' weather and GSP data
- Finds:
 - large effects of Summer (negative) and Fall (positive) temperatures on states' GDP growth

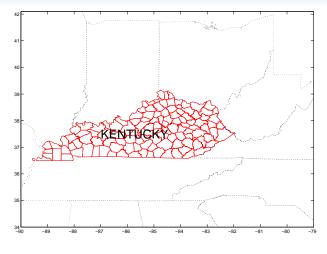
- Answers this question for the United States' GDP
- Employs a panel of US states' weather and GSP data
- Finds:
 - large effects of Summer (negative) and Fall (positive) temperatures on states' GDP growth
 - 2 negative effect of Summer temperature getting stronger over time

- Answers this question for the United States' GDP
- Employs a panel of US states' weather and GSP data
- Finds:
 - large effects of Summer (negative) and Fall (positive) temperatures on states' GDP growth
 - 2 negative effect of Summer temperature getting stronger over time
 - in net, rising temperatures may decrease US growth by up to 1/3 over next century

Data

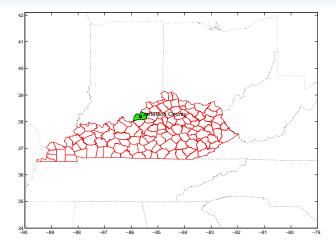
- 2 Empirical Evidence
- Interpretation
- Welfare Analysis

Data


Weather Stations

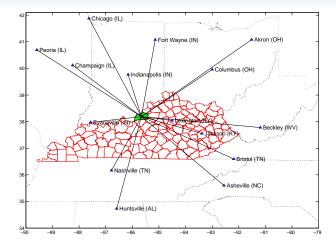
135 Weather Stations (Source: NOAA Northeast Regional Climate Center)

(Data)


Calculation of State Level Weather

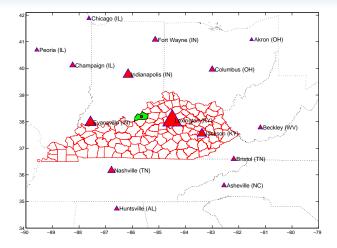
Kentucky has 120 Counties

(Data)


Calculation of State Level Weather

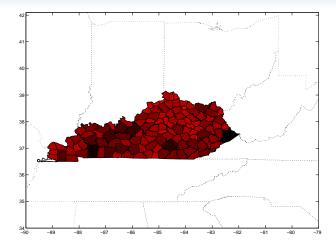
For each County we find the coordinates of the center

(Data)


Calculation of State Level Weather

We calculate the distance between County and Weather Stations

(Data)


Calculation of State Level Weather

We weight Weather Stations as an inverse function of their distance

(Data)

Calculation of State Level Weather

We aggregate to State level by weighting each county according to area or population

(Data)

Data sources

- Economic data: BEA, sample 1957-2012
- Population and Area: CENSUS
- Weather: NOAA

Empirical Evidence

- Time series regression (US aggregate data)
- Panel regression
- Combine results with trends in temperature

Time Series Regressions

Whole Year	Winter	Spring	Summer	Fall
-0.396				
(0.382)				

• Time series regressions with Annual Temperature: insignificant

Time Series Regressions

Whole Year	Winter	Spring	Summer	Fall
-0.396	-0.071	-0.027	-0.414	0.042
(0.382)	(0.179)	(0.334)	(0.385)	(0.287)

- Time series regressions with Annual Temperature: insignificant
- Time series regressions with Seasonal Temperatures: insignificant

Time Series Regressions

Whole Year	Winter	Spring	Summer	Fall
-0.396	-0.071	-0.027	-0.414	0.042
(0.382)	(0.179)	(0.334)	(0.385)	(0.287)

- Time series regressions with Annual Temperature: insignificant
- Time series regressions with Seasonal Temperatures: insignificant
- Annual coefficient similar to Summer coefficient

	Whole Year	Winter	Spring	Summer	Fall
Whole country					
North					
South					
Midwest					
West					

Data

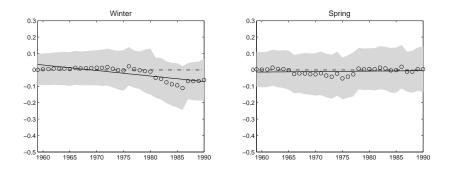
Extra

Panel Regressions

	Whole Year	Winter	Spring	Summer	Fall
Whole country	0.006				
	(0.111)				
North					
South					
Midwest					
West					

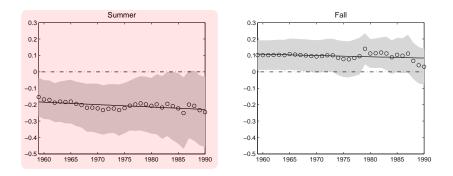
• Annual regressions are still inconclusive

	Whole Year	Winter	Spring	Summer	Fall
Whole country	0.006				
	(0.111)				
North	0.343				
	(0.339)				
South	0.283				
	(0.303)				
Midwest	-0.212				
	(0.235)				
West	-0.144				
	(0.203)				

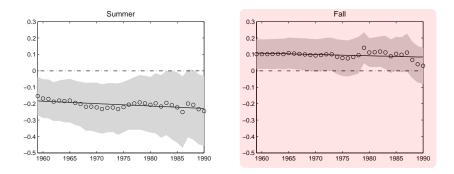

- Annual regressions are still inconclusive
- Similar results for Regions

	Whole Year	Winter	Spring	Summer	Fall
Whole country	0.006	0.001	0.003	-0.154^{**}	0.102^{*}
	(0.111)	(0.049)	(0.065)	(0.072)	(0.055)
North	0.343				
	(0.339)				
South	0.283				
	(0.303)				
Midwest	-0.212				
	(0.235)				
West	-0.144				
	(0.203)				


- Annual regressions are still inconclusive
- Similar results for Regions
- Summer and Fall temperatures affect economic growth
 - Rising Summer temperatures decrease growth
 - Rising Fall temperatures increase growth


	Whole Year	Winter	Spring	Summer	Fall
Whole country	0.006	0.001	0.003	-0.154^{**}	0.102^{*}
	(0.111)	(0.049)	(0.065)	(0.072)	(0.055)
North	0.343	0.329^{*}	0.065	0.240	-0.255
	(0.339)	(0.173)	(0.296)	(0.257)	(0.233)
South	0.283	-0.087	0.152	-0.326^{**}	0.571^{***}
	(0.303)	(0.167)	(0.159)	(0.163)	(0.194)
Midwest	-0.212	0.010	-0.158	0.043	-0.116
	(0.235)	(0.089)	(0.144)	(0.162)	(0.128)
West	-0.144	-0.000	-0.155	0.028	-0.006
	(0.203)	(0.096)	(0.143)	(0.154)	(0.167)

- Annual regressions are still inconclusive
- Similar results for Regions
- Summer and Fall temperatures affect economic growth
 - Rising Summer temperatures decrease growth
 - Rising Fall temperatures increase growth
- Results mostly driven by South



Effect of Winter and Spring temperatures very stable

Summer effect is getting stronger over time

Fall effect is getting weaker over time

Full sample estimate0.1021990-2012 estimate0.031

Data

Extra

How large are these numbers?

How large are these numbers?

Year to year: net effect is small

How large are these numbers?

- Year to year: net effect is small
- Long Horizons?

How large are these numbers?

- Year to year: net effect is small
- Long Horizons?
 - \rightarrow It depends on relative trends in Summer and Fall temperatures

Effect over Long Horizons

• Time trends in Seasonal temperatures

		Whole Year	Winter	Spring	Summer	Fall
Ţ.	Trend	0.041***	0.071^{***}	0.034^{***}	0.036***	0.021**
nt		(0.006)	(0.015)	(0.010)	(0.008)	(0.009)
n	AR(1)	0.077	-0.048	0.143	0.061	-0.212
Ŭ		(0.149)	(0.146)	(0.143)	(0.141)	(0.139)

Time trends in Seasonal temperatures

		Whole Year	Winter	Spring	Summer	Fall
Ţ.	Trend	0.041***	0.071***	0.034^{***}	0.036***	0.021**
n n		(0.006)	(0.015)	(0.010)	(0.008)	(0.009)
no	AR(1)	0.077	-0.048	0.143	0.061	-0.212
ŭ		(0.149)	(0.146)	(0.143)	(0.141)	(0.139)

Summer temperature is expected to rise twice as much as Fall temperature

Time trends in Seasonal temperatures

		Whole Year	Winter	Spring	Summer	Fall
ĉ	Trend	0.041***	0.071^{***}	0.034^{***}	0.036***	0.021**
n n		(0.006)	(0.015)	(0.010)	(0.008)	(0.009)
no	AR(1)	0.077	-0.048	0.143	0.061	-0.212
Ŭ		(0.149)	(0.146)	(0.143)	(0.141)	(0.139)

- Summer temperature is expected to rise twice as much as Fall temperature
- Impact over the next century

 0.036×100

Expected rise in Summer temperature

 0.021×100

Expected rise in Fall temperature

Time trends in Seasonal temperatures

		Whole Year	Winter	Spring	Summer	Fall
ĉ	Trend	0.041***	0.071^{***}	0.034^{***}	0.036***	0.021**
n n		(0.006)	(0.015)	(0.010)	(0.008)	(0.009)
no	AR(1)	0.077	-0.048	0.143	0.061	-0.212
Ŭ		(0.149)	(0.146)	(0.143)	(0.141)	(0.139)

- Summer temperature is expected to rise twice as much as Fall temperature
- Impact over the next century

Time trends in Seasonal temperatures

		Whole Year	Winter	Spring	Summer	Fall
ĉ	Trend	0.041***	0.071^{***}	0.034^{***}	0.036***	0.021**
n n		(0.006)	(0.015)	(0.010)	(0.008)	(0.009)
no	AR(1)	0.077	-0.048	0.143	0.061	-0.212
Ŭ		(0.149)	(0.146)	(0.143)	(0.141)	(0.139)

- Summer temperature is expected to rise twice as much as Fall temperature
- Impact over the next century

Time trends in Seasonal temperatures

		Whole Year	Winter	Spring	Summer	Fall
ĉ	Trend	0.041***	0.071^{***}	0.034^{***}	0.036***	0.021**
n n		(0.006)	(0.015)	(0.010)	(0.008)	(0.009)
no	AR(1)	0.077	-0.048	0.143	0.061	-0.212
Ŭ		(0.149)	(0.146)	(0.143)	(0.141)	(0.139)

- Summer temperature is expected to rise twice as much as Fall temperature
- Impact over the next century

Take-away message

To capture the effect of rising temperature on US growth, we need to:

- break down annual temperatures into seasonal temperatures
- 2 look at the differences in seasonal temperature trends

• Representative agent with Recursive Preferences

$$U_t = (1 - \delta) \log C_t + \frac{\delta}{1 - \gamma} \log E_t \exp\left\{(1 - \gamma)U_{t+1}\right\}$$

Representative agent with Recursive Preferences

$$U_t = (1 - \delta) \log C_t + \frac{\delta}{1 - \gamma} \log E_t \exp\left\{(1 - \gamma)U_{t+1}\right\}$$

• Consumption dynamics [Business As Usual]

$$\Delta c_t = 0.02 - 0.154 \cdot temp_t^{sum} + 0.102 \cdot temp_t^{fall} + 0.02 \cdot \varepsilon_{c,t}$$

where

$$temp_t^{sum} = 0.036 \cdot t + 0.0078 \cdot \varepsilon_t^{summ}$$
$$temp_t^{fall} = 0.021 \cdot t + 0.0116 \cdot \varepsilon_t^{fall}$$

Representative agent with Recursive Preferences

$$U_t = (1 - \delta) \log C_t + \frac{\delta}{1 - \gamma} \log E_t \exp\left\{(1 - \gamma)U_{t+1}\right\}$$

• Consumption dynamics [Intervention]

$$\Delta c_t = 0.02 - 0.154 \cdot (1 - \Delta^{\lambda}) \cdot temp_t^{sum} + 0.102 \cdot (1 - \Delta^{\lambda}) \cdot temp_t^{fall} + 0.02 \cdot \varepsilon_{c,t}$$

where

$$temp_t^{sum} = 0.036 \cdot t + 0.0078 \cdot \varepsilon_t^{summ}$$
$$temp_t^{fall} = 0.021 \cdot t + 0.0116 \cdot \varepsilon_t^{fall}$$

Welfare gains of

Representative agent with Recursive Preferences

$$U_t = (1 - \delta) \log C_t + \frac{\delta}{1 - \gamma} \log E_t \exp\left\{(1 - \gamma)U_{t+1}\right\}$$

• Consumption dynamics [Intervention]

$$\Delta c_t = 0.02 - 0.154 \cdot (1 - \Delta^{\lambda}) \cdot temp_t^{sum} + 0.102 \cdot (1 - \Delta^{\lambda}) \cdot temp_t^{fall} + 0.02 \cdot \varepsilon_{c,t}$$

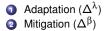
where

$$temp_t^{sum} = 0.036 \cdot (1 - \Delta^{\beta}) \cdot t + 0.0078 \cdot \varepsilon_t^{summ}$$
$$temp_t^{fall} = 0.021 \cdot (1 - \Delta^{\beta}) \cdot t + 0.0116 \cdot \varepsilon_t^{fall}$$

Welfare gains of

Representative agent with Recursive Preferences

$$U_t = (1 - \delta) \log C_t + \frac{\delta}{1 - \gamma} \log E_t \exp\left\{(1 - \gamma)U_{t+1}\right\}$$


• Consumption dynamics [Intervention]

$$\Delta c_t = 0.02 - 0.154 \cdot (1 - \Delta^{\lambda}) \cdot temp_t^{sum} + 0.102 \cdot (1 - \Delta^{\lambda}) \cdot temp_t^{fall} + 0.02 \cdot \varepsilon_{c,t}$$

where

$$\begin{array}{lll} temp_t^{sum} &=& 0.036 \cdot (1 - \Delta^{\beta}) \cdot t + 0.0078 \cdot \varepsilon_t^{summ} \\ temp_t^{fall} &=& 0.021 \cdot (1 - \Delta^{\beta}) \cdot t + 0.0116 \cdot \varepsilon_t^{fall} \end{array}$$

Welfare gains of

Welfare Analysis (cont'd)

Calculate the permanent changes in

- the level of consumption (Δ_0)
- the growth rate of consumption (Δ_1)

that make the agent indifferent between living in

- Business As Usual economy
- Intervention economy

Welfare Analysis: Results

					Δ^{β}		
		0%	20%	40%	60%	80%	100%
	0%	0.0	-0.1	-0.1	-0.2	-0.2	-0.3
	20%	-0.1	-0.1	-0.1	-0.2	-0.2	-0.3
< _	40%	-0.1	-0.1	-0.2	-0.2	-0.2	-0.3
ব	60%	-0.2	-0.2	-0.2	-0.2	-0.3	-0.3
	80%	-0.2	-0.2	-0.2	-0.3	-0.3	-0.3
	100%	-0.3	-0.3	-0.3	-0.3	-0.3	-0.3

Panel A: permanent reduction of the level (Δ_0)

Panel B: permanent growth rate reduction (Δ_1/μ_c)

					Δ^{β}		
		0%	20%	40%	60%	80%	100%
	0%	0.0	-2.8	-5.6	-8.4	-11.2	-14.0
	20%	-2.8	-5.0	-7.3	-9.5	-11.8	-14.0
<_	40%	-5.6	-7.3	-9.0	-10.6	-12.3	-14.0
ব	60%	-8.4	-9.5	-10.6	-11.8	-12.9	-14.0
	80%	-11.2	-11.8	-12.3	-12.9	-13.4	-14.0
	100%	-14.0	-14.0	-14.0	-14.0	-14.0	-14.0

H 18 / 20

Extra

Welfare Analysis: Results

			Δ^eta							
		0%	20%	40%	60%	80%	100%			
	0%	0.0	-0.1	-0.1	-0.2	-0.2	-0.3			
	20%	-0.1	-0.1	-0.1	-0.2	-0.2	-0.3			
< _	40%	-0.1	-0.1	-0.2	-0.2	-0.2	-0.3			
ব	60%	-0.2	-0.2	-0.2	-0.2	-0.3	-0.3			
	80%	-0.2	-0.2	-0.2	-0.3	-0.3	-0.3			
	100%	-0.3	-0.3	-0.3	-0.3	-0.3	-0.3			

Panel A: permanent reduction of the level (Δ_0)

Panel B: permanent growth rate reduction (Δ_1/μ_c)

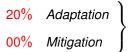
			Δ^{eta}						
		0%	20%	40%	60%	80%	100%		
	0%	0.0	-2.8	-5.6	-8.4	-11.2	-14.0		
	20%	-2.8	-5.0	-7.3	-9.5	-11.8	-14.0		
< _	40%	-5.6	-7.3	-9.0	-10.6	-12.3	-14.0		
ব	60%	-8.4	-9.5	-10.6	-11.8	-12.9	-14.0		
	80%	-11.2	-11.8	-12.3	-12.9	-13.4	-14.0		
	100%	-14.0	-14.0	-14.0	-14.0	-14.0	-14.0		

Welfare Analysis: Results

					Δ^{β}		Δ^eta							
		0%	20%	40%	60%	80%	100%							
	0%	0.0	-0.1	-0.1	-0.2	-0.2	-0.3							
	20%	-0.1	-0.1	-0.1	-0.2	-0.2	-0.3							
< _	40%	-0.1	-0.1	-0.2	-0.2	-0.2	-0.3							
ব	60%	-0.2	-0.2	-0.2	-0.2	-0.3	-0.3							
	80%	-0.2	-0.2	-0.2	-0.3	-0.3	-0.3							
	100%	-0.3	-0.3	-0.3	-0.3	-0.3	-0.3							

Panel A: permanent reduction of the level (Δ_0)

Panel B: permanent growth rate reduction (Δ_1/μ_c)


			Δ^{eta}							
		0%	20%	40%	60%	80%	100%			
	0%	0.0	-2.8	-5.6	-8.4	-11.2	-14.0			
	20%	-2.8	-5.0	-7.3	-9.5	-11.8	-14.0			
<	40%	-5.6	-7.3	-9.0	-10.6	-12.3	-14.0			
ব	60%	-8.4	-9.5	-10.6	-11.8	-12.9	-14.0			
	80%	-11.2	-11.8	-12.3	-12.9	-13.4	-14.0			
	100%	-14.0	-14.0	-14.0	-14.0	-14.0	-14.0			

 \Rightarrow

 Δ^{β}

Give up:

0.10% of current consumption level

2.80% of current consumption growth

18/20

Welfare Analysis: Results

					Δ^{β}		Δ^{eta}							
		0%	20%	40%	60%	80%	100%							
	0%	0.0	-0.1	-0.1	-0.2	-0.2	-0.3							
	20%	-0.1	-0.1	-0.1	-0.2	-0.2	-0.3							
<_	40%	-0.1	-0.1	-0.2	-0.2	-0.2	-0.3							
ব	60%	-0.2	-0.2	-0.2	-0.2	-0.3	-0.3							
	80%	-0.2	-0.2	-0.2	-0.3	-0.3	-0.3							
	100%	-0.3	-0.3	-0.3	-0.3	-0.3	-0.3							

Panel A: permanent reduction of the level (Δ_0)

Panel B: permanent growth rate reduction (Δ_1/μ_c)

			Δ^{eta}					
		0%	20%	40%	60%	80%	100%	
	0%	0.0	-2.8	-5.6	-8.4	-11.2	-14.0	
	20%	-2.8	-5.0	-7.3	-9.5	-11.8	-14.0	
< _	40%	-5.6	-7.3	-9.0	-10.6	-12.3	-14.0	
ব	60%	-8.4	-9.5	-10.6	-11.8	-12.9	-14.0	
	80%	-11.2	-11.8	-12.3	-12.9	-13.4	-14.0	
	100%	-14.0	-14.0	-14.0	-14.0	-14.0	-14.0	

 Δ^{β}

60% Adaptation 60% Mitigation

Give up:

0.20% of current consumption level

11.8% of current consumption growth

18 / 20

Conclusion

Robustness checks

Results are robust to:

- alternative weighting schemes
- controlling for precipitation
- controlling for temperature volatility

Details	

(

H 19 / 20

(Conclusion)

Extra

Concluding Remarks

.

Conclusion

Extra

Concluding Remarks

• Provide evidence for impact of rising temperature on US economic growth

Conclusion

Extra

Concluding Remarks

- Provide evidence for impact of rising temperature on US economic growth
- Strong seasonal effect, especially Summer

Conclusion

Extra

Concluding Remarks

- Provide evidence for impact of rising temperature on US economic growth
- Strong seasonal effect, especially Summer
- Analysis informative for Integrated Assessment Models

20 / 20

Motivation

Á

Empirical Evidence

Interpretation

Welfare Analysis

Robustness

Conc

Extra

Extra Slides

1/4

Alternative weighting schemes (**PBack**)

	Whole Year	Winter	Spring	Summer	Fall
GSP (varying)	0.010	0.008	-0.008	-0.148^{*}	0.105^{*}
	(0.119)	(0.051)	(0.067)	(0.077)	(0.058)
Area	0.054	0.018	0.012	-0.098	0.079
	(0.123)	(0.062)	(0.074)	(0.066)	(0.063)
Population	0.057	0.028	-0.025	-0.132^{*}	0.131^{**}
	(0.123)	(0.053)	(0.069)	(0.071)	(0.061)

(Extra)

Controlling for Precipitation (•Back)

		Whole Year	Winter	Spring	Summer	Fall
USA	Temp.	0.004	0.003	0.008	-0.169^{**}	0.093*
		(0.113)	(0.047)	(0.069)	(0.077)	(0.056)
	Prec.	-0.012	-0.050	-0.044	0.006	0.037
		(0.056)	(0.033)	(0.032)	(0.032)	(0.028)
North	Temp.	0.366	0.333^{*}	0.103	0.122	-0.256
		(0.348)	(0.189)	(0.302)	(0.272)	(0.263)
	Prec.	-0.063	-0.118	-0.098	0.061	0.161
		(0.175)	(0.106)	(0.083)	(0.091)	(0.116)
Midwest	Temp.	-0.232	0.009	-0.164	-0.014	-0.112
		(0.239)	(0.091)	(0.142)	(0.168)	(0.122)
	Prec.	-0.076	0.025	-0.047	-0.013	-0.015
		(0.117)	(0.064)	(0.044)	(0.059)	(0.086)
South	Temp.	0.323	-0.091	0.214	-0.402^{**}	0.561^{***}
		(0.325)	(0.164)	(0.188)	(0.162)	(0.195)
	Prec.	0.056	0.019	-0.083^{*}	0.017	0.058
		(0.125)	(0.055)	(0.049)	(0.061)	(0.056)
West	Temp.	-0.142	0.006	-0.124	0.045	-0.006
		(0.204)	(0.095)	(0.144)	(0.159)	(0.170)
	Prec.	0.133^{*}	0.020	0.092	0.080^{*}	0.003
		(0.072)	(0.041)	(0.082)	(0.045)	(0.033)

Controlling for Temperature Volatility (

		Whole Year	Winter	Spring	Summer	Fall
Whole country	Mean	0.004	-0.009	-0.013	-0.138^{*}	0.106^{*}
		(0.111)	(0.050)	(0.062)	(0.071)	(0.055)
	Vol	-0.002	0.002	-0.001	0.002	-0.000
		(0.002)	(0.002)	(0.001)	(0.002)	(0.001)
North	Mean	0.324	0.363^{**}	0.113	0.189	-0.201
		(0.340)	(0.176)	(0.296)	(0.251)	(0.214)
	Vol	-0.004	-0.004	0.001	-0.003	-0.003
		(0.006)	(0.005)	(0.004)	(0.004)	(0.003)
Midwest	Mean	-0.212	0.009	-0.177	0.047	-0.117
		(0.236)	(0.085)	(0.149)	(0.154)	(0.121)
	Vol	-0.001	0.004	0.002	0.003	-0.001
		(0.003)	(0.005)	(0.003)	(0.002)	(0.002)
South	Mean	0.273	-0.121	0.135	-0.280^{*}	0.580^{***}
		(0.299)	(0.173)	(0.154)	(0.154)	(0.208)
	Vol	-0.005	0.002	0.006^{*}	0.003	-0.004
		(0.005)	(0.003)	(0.003)	(0.005)	(0.003)
West	Mean	-0.146	-0.004	-0.148	0.040	-0.031
		(0.204)	(0.099)	(0.144)	(0.155)	(0.181)
	Vol	-0.000	-0.001	-0.000	0.002	-0.001
		(0.003)	(0.002)	(0.002)	(0.003)	(0.002)