O' Sole Mio
 An Experimental Analysis of Weather and Risk Attitudes

Anna Bassi, Riccardo Colacito, and Paolo Fulghieri

VCU, 04/30/2012

Motivation

(1) Economics Literature: personal characteristics and risk attitudes

- Cox and Harrison (2008) measuring risk aversion;
- Benjamin, Choi, and Fisher (2010): Protestants more risk-averse than Catholics.
- Men less risk averse than women (Eckel and Grossman, 2007 for a comprehensive survey.
- Lower risk aversion for younger (Dohmen et al., 2010) and wealthier (Guiso and Paiella, 2008) individuals.

Motivation

(1) Economics Literature: personal characteristics and risk attitudes

- Cox and Harrison (2008) measuring risk aversion;
- Benjamin, Choi, and Fisher (2010): Protestants more risk-averse than Catholics.
- Men less risk averse than women (Eckel and Grossman, 2007 for a comprehensive survey.
- Lower risk aversion for younger (Dohmen et al., 2010) and wealthier (Guiso and Paiella, 2008) individuals.
(2) Finance Literature: weather affects assets' prices
- Saunders (1993), Hirshleifer and Shumway (2003): stock returns are negative when cloudy in city where stocks are exchanged.
- Kamstra, Kramer, and Levi (2003) seasonal variations in stock returns are correlated with variations in the exposure to sunlight of different countries.
- Lo and Wu (2010) analyst forecasts are more pessimistic in the fall.

Weather, mood, and risks taking

(1) Psychology Literature: impact of sunlight and weather on human mood:

- Sanders and Brizzolara, 1982: good mood \& low levels of humidity;
- Cunnigham, 1979; Parrot and Sabini, 1990; and Schwartz and Clore, 1983: good mood \& high levels of sunlight;
- Cunnigham, 1979; Howarth and Hoffman, 1984: good mood \& high temperature.

Weather, mood, and risks taking

(1) Psychology Literature: impact of sunlight and weather on human mood:

- Sanders and Brizzolara, 1982: good mood \& low levels of humidity;
- Cunnigham, 1979; Parrot and Sabini, 1990; and Schwartz and Clore, 1983: good mood \& high levels of sunlight;
- Cunnigham, 1979; Howarth and Hoffman, 1984: good mood \& high temperature.
(2) Mechanism: what is the process by which mood affects human behavior?
- Cognitive evaluation channel: Mood \rightarrow cognitive behavior \rightarrow decision making (Isen, 2000);
- Risk tolerance channel: Mood \rightarrow risk preferences (link between anxiety/depression and "sensation seeking" measures - proxy for risk-taking behavior-. (Eisenberg et al., 1998)).

Weather, mood, and risks taking

(1) Psychology Literature: impact of sunlight and weather on human mood:

- Sanders and Brizzolara, 1982: good mood \& low levels of humidity;
- Cunnigham, 1979; Parrot and Sabini, 1990; and Schwartz and Clore, 1983: good mood \& high levels of sunlight;
- Cunnigham, 1979; Howarth and Hoffman, 1984: good mood \& high temperature.
(2) Mechanism: what is the process by which mood affects human behavior?
- Cognitive evaluation channel: Mood \rightarrow cognitive behavior \rightarrow decision making (Isen, 2000);
- Risk tolerance channel: Mood \rightarrow risk preferences (link between anxiety/depression and "sensation seeking" measures - proxy for risk-taking behavior-. (Eisenberg et al., 1998)).
(3) Our approach: Explicit link between sunlight/weather on risk attitudes
- Controlled laboratory experiments in which subjects are randomized between sessions with good and bad weather.
- Subjects are presented with sets of lottery pairs to elicit their risk attitude.

Experimental Design

- Controlled experiment where subjects were exposed to different weather conditions (treatments).

Experimental Design

- Controlled experiment where subjects were exposed to different weather conditions (treatments).
- Between-subject design
- Randomization: we scheduled twin pairs of experimental sessions per week in days with diametrically opposed weather forecasts.
- Subjects need to register to both the twin sessions and then they were randomly allocated to one of the two sessions.

Experimental Design

- Controlled experiment where subjects were exposed to different weather conditions (treatments).
- Between-subject design
- Randomization: we scheduled twin pairs of experimental sessions per week in days with diametrically opposed weather forecasts.
- Subjects need to register to both the twin sessions and then they were randomly allocated to one of the two sessions.
- Within-subjects treatments
- Payoff treatments (High/Low);
- Tasks treatments (Risk/Skewness/Risk+Skewness).

Experimental Procedures

- The experiment was conducted by paper and pencil in a large classroom with windows.

Experimental Procedures

- The experiment was conducted by paper and pencil in a large classroom with windows.
- Target number of participants equal to 15 .

Experimental Procedures

- The experiment was conducted by paper and pencil in a large classroom with windows.
- Target number of participants equal to 15.
- We recruited 140 subjects (UNC e-recruit subject pool: students \& employees) from March 2011 to February 2012.

Experimental Procedures

- The experiment was conducted by paper and pencil in a large classroom with windows.
- Target number of participants equal to 15.
- We recruited 140 subjects (UNC e-recruit subject pool: students \& employees) from March 2011 to February 2012.
- Upon arrival, subjects were seated at workplaces placed throughout the classroom so that subjects could not see what others subjects were doing and they could not be seen by others.

Experimental Procedures

- The experiment was conducted by paper and pencil in a large classroom with windows.
- Target number of participants equal to 15.
- We recruited 140 subjects (UNC e-recruit subject pool: students \& employees) from March 2011 to February 2012.
- Upon arrival, subjects were seated at workplaces placed throughout the classroom so that subjects could not see what others subjects were doing and they could not be seen by others.
- First, subjects ran the three tasks treatments with low payoffs first, and then with high payoffs.

Experimental Procedures

- The experiment was conducted by paper and pencil in a large classroom with windows.
- Target number of participants equal to 15.
- We recruited 140 subjects (UNC e-recruit subject pool: students \& employees) from March 2011 to February 2012.
- Upon arrival, subjects were seated at workplaces placed throughout the classroom so that subjects could not see what others subjects were doing and they could not be seen by others.
- First, subjects ran the three tasks treatments with low payoffs first, and then with high payoffs.
- Last, subjects were asked to complete a questionnaire.

Questionnaire

- Age, Gender, Marital status, Employment status
- Income: Personal income, Family income
- Education: Major, year, highest education of parents
- Voting: vote cast in last election, intention to vote in next
- Risky actions: gambling, playing lotteries
- Religion
- Political leaning:
- Happiness
- Weather: today and tomorrow

Defining Weather

We use three definitions/measures:

Defining Weather

We use three definitions/measures:
(1) Amount of Sunlight

Defining Weather

We use three definitions/measures:
(1) Amount of Sunlight
\rightarrow Clear sky is good weather

Defining Weather

We use three definitions/measures:
(1) Amount of Sunlight
\rightarrow Clear sky is good weather
\rightarrow Overcast/Precipitation is bad weather

Defining Weather

We use three definitions/measures:
(1) Amount of Sunlight
\rightarrow Clear sky is good weather
\rightarrow Overcast/Precipitation is bad weather
(2) Amount of Precipitation

Defining Weather

We use three definitions/measures:
(1) Amount of Sunlight
\rightarrow Clear sky is good weather
\rightarrow Overcast/Precipitation is bad weather
(2) Amount of Precipitation
\rightarrow Precipitation less than average is good weather

Defining Weather

We use three definitions/measures:
(1) Amount of Sunlight
\rightarrow Clear sky is good weather
\rightarrow Overcast/Precipitation is bad weather
(2) Amount of Precipitation
\rightarrow Precipitation less than average is good weather
\rightarrow Precipitation more than average is bad weather

Defining Weather

We use three definitions/measures:
(1) Amount of Sunlight
\rightarrow Clear sky is good weather
\rightarrow Overcast/Precipitation is bad weather
(2) Amount of Precipitation
\rightarrow Precipitation less than average is good weather
\rightarrow Precipitation more than average is bad weather
(3) Subjective Assessment

Defining Weather

We use three definitions/measures:
(1) Amount of Sunlight
\rightarrow Clear sky is good weather
\rightarrow Overcast/Precipitation is bad weather
(2) Amount of Precipitation
\rightarrow Precipitation less than average is good weather
\rightarrow Precipitation more than average is bad weather
(3) Subjective Assessment
\rightarrow How do you feel about the Weather?

Baseline treatment

- Multiple Price Listing
- Baseline Holt \& Laury, 2002 treatments (with 1x payoffs)

Holt \& Laury, 2002 MPL

	Option A	Option B
Decision 1:	\$2.00 w.p 10\% , \$1.60 w.p 90\%	\$3.85 w.p 10\% , \$0.10 w.p 90\%
Decision 2 :	\$2.00 w.p 20\% , \$1.60 w.p 80\%	\$3.85 w.p 20\% , \$0.10 w.p 80\%
Decision 3 :	\$2.00 w.p 30\% , \$1.60 w.p 70\%	\$3.85 w.p 30\% , \$0.10 w.p 70\%
Decision 4 :	\$2.00 w.p 40\% , \$1.60 w.p 60\%	\$3.85 w.p 40\% , \$0.10 w.p 60\%
Decision 5 :	\$2.00 w.p 50\% , \$1.60 w.p 50\%	\$3.85 w.p 50\% , \$0.10 w.p 50\%
Decision 6 :	\$2.00 w.p 60\% , \$1.60 w.p 40\%	\$3.85 w.p 60\% , \$0.10 w.p 40\%
Decision 7 :	\$2.00 w.p 70\%, \$1.60 w.p 30\%	\$3.85 w.p 70\% , \$0.10 w.p 30\%
Decision 8 :	\$2.00 w.p 80\%, \$1.60 w.p 20\%	\$3.85 w.p 80\% , \$0.10 w.p 20\%
Decision 9 :	\$2.00 w.p 90\%, \$1.60 w.p 10\%	\$3.85 w.p 90\% , \$0.10 w.p 10\%
Decision 10 :	\$2.00 w.p 100\%, \$1.60 w.p 0\%	\$3.85 w.p 100\%, \$0.10 w.p 0\%

Moments

	Option A				Option B			
	Exp	Var	Skew	Kurt	Exp	Var	Skew	Kurt
Decision 1 :	1.64	0.01	2.67	8.11	0.48	1.27	2.67	8.11
Decision 2 :	1.68	0.03	1.50	3.25	0.85	2.25	1.50	3.25
Decision 3 :	1.72	0.03	0.87	1.76	1.23	2.95	0.87	1.76
Decision 4 :	1.76	0.04	0.41	1.17	1.60	3.38	0.41	1.17
Decision 5 :	1.80	0.04	0.00	1.00	1.98	3.52	0.00	1.00
Decision 6 :	1.84	0.04	-0.41	1.17	2.35	3.38	-0.41	1.17
Decision 7 :	1.88	0.03	-0.87	1.76	2.73	2.95	-0.87	1.76
Decision 8 :	1.92	0.03	-1.50	3.25	3.10	2.25	-1.50	3.25
Decision 9 :	1.96	0.01	-2.67	8.11	3.48	1.27	-2.67	8.11
Decision 10:	2.00	0.00	-	-	3.85	0.01	-	-

Average Risk Aversion

Average Risk Aversion

Panel A: The Effect of Clear/Overcast on Risk Aversion

Average Risk Aversion

Panel A: The Effect of Clear/Overcast on Risk Aversion

Amount of Sunlight and Risk Aversion

Amount of Sunlight and Risk Aversion

Panel A: The Effect of Clear/Overcast on Risk Aversion

Amount of Sunlight and Risk Aversion

Panel A: The Effect of Clear/Overcast on Risk Aversion

Amount of Sunlight and Risk Aversion

Panel A: The Effect of Clear/Overcast on Risk Aversion

Precipitation and Risk Aversion

Precipitation and Risk Aversion

Panel B: The Effect of Precipitation on Risk Aversion

Subjective Weather and Risk Aversion

Subjective Weather and Risk Aversion

Panel C: The Effect of Subjective Weather Assessment on Risk Aversion

Are these differences statistically significant?

Are these differences statistically significant?

Table: Average Frequencies of Safe Choices

	Clear/Overcast	Precipitation	Subjective Weather
Bad Weather	0.575	0.622	0.572
Good Weather	0.509	0.526	0.511
$[p-$ values $]$	$[0.008]$	$[0.001]$	$[0.035]$

What is the marginal effect of weather?

What is the marginal effect of weather?

- Focus on decisions 4-7 to maximize statistical power.

What is the marginal effect of weather?

- Focus on decisions 4-7 to maximize statistical power.
- Run a logit regression.

What is the marginal effect of weather?

- Focus on decisions 4-7 to maximize statistical power.
- Run a logit regression.
- Standard errors calculated with block bootstrap.

What is the marginal effect of weather?

- Focus on decisions 4-7 to maximize statistical power.
- Run a logit regression.
- Standard errors calculated with block bootstrap.
- Control for weather and other personal characteristics
- Religiousness
- Sex
- Political Leaning
- Wealth
- Race
- ...

Logit - Risk Aversion

	One variable at a time	Precipitation + controls	Overcast-Clear + controls	Subjective Weather + controls
Precipitation	0.080***	0.080***		
Overcast-Clear	$0.052^{* * *}$		$0.051^{* * *}$	
Subjective Weather (Bad-Good)	$0.054^{* * *}$			$0.051^{* * *}$
Income	0.000	0.000	0.000*	0.000
Religious (Yes-No)	$-0.068^{* *}$	0.000	-0.044*	-0.046*
Political Leaning (Liberal-Conservative)	0.029*	0.000	0.053**	$0.054^{* *}$
Gender (Male-Female)	0.026			
Race				
White/Caucasian	$-0.090^{* * *}$			
Asian	0.027			
Play lotteries (Yes-No)	0.000			
Economy concerned (No-Yes)	-0.024*			

Amount of Sunlight and Risk Aversion

Panel A: The Effect of Clear/Overcast on Risk Aversion

Precipitation and Risk Aversion

Panel B: The Effect of Precipitation on Risk Aversion

Subjective Weather and Risk Aversion

Panel C: The Effect of Subjective Weather Assessment on Risk Aversion

High Payoffs

- What happen when the stakes are higher?
- Subjects repeat the task with 10x payoffs.

Amount of Sunlight and Risk Aversion

Precipitation and Risk Aversion

Panel B: The Effect of Precipitation on Risk Aversion (High Payoffs)

Subjective Weather and Risk Aversion

Panel C: The Effect of Subjective Weather Assessment on Risk Aversion

Hypothesis testing: Are these differences statistically significant?

Hypothesis testing: Are these differences statistically significant?

Table: Average Frequencies of Safe Choices

	Clear/Overcast	Precipitation	Subjective Weather
Bad Weather	0.705	0.756	0.700
Good Weather	0.629	0.650	0.619
$[p-$ values $]$	$[0.014]$	$[0.003]$	$[0.041]$

Logit - High Payoffs

	One variable at a time	Precipitation + controls	Overcast-Clear + controls	Subjective Weather + controls
Precipitation	$0.063^{* * *}$	$0.063^{* * *}$		
Overcast-Clear	0.053***		$0.051^{* * *}$	
Subjective Weather (Bad-Good)	$0.037^{* *}$			0.037**
Income	0.000*	0.000	0.000	0.001*
Religious (Yes-No)	0.010	0.000	0.011	0.008
Political Leaning (Liberal-Conservative)	0.012	0.000	-0.003	-0.001
Gender (Male-Female)	0.031			
Race				
White/Caucasian	-0.017			
Asian	$-0.098^{* *}$			
Play lotteries (Yes-No)	0.000			
Economy concerned (No-Yes)	$-0.034^{* *}$			

Amount of Sunlight and Risk Aversion

Precipitation and Risk Aversion

Panel B: The Effect of Precipitation on Risk Aversion

Subjective Weather and Risk Aversion

Panel C: The Effect of Subjective Weather Assessment on Risk Aversion

Relative Risk Aversion

Relative Risk Aversion

- Estimate the preference parameters of the "power-expo" utility function;

$$
U(x)=\frac{1-\exp \left\{-\alpha x^{1-r}\right\}}{\alpha}
$$

Relative Risk Aversion

- Estimate the preference parameters of the "power-expo" utility function;

$$
U(x)=\frac{1-\exp \left\{-\alpha x^{1-r}\right\}}{\alpha}
$$

- This specification nests the cases of
- constant relative risk aversion $(\alpha \rightarrow 0)$
- constant absolute risk aversion ($r \rightarrow 0$)

Relative Risk Aversion

- Estimate the preference parameters of the "power-expo" utility function;

$$
U(x)=\frac{1-\exp \left\{-\alpha x^{1-r}\right\}}{\alpha}
$$

- This specification nests the cases of
- constant relative risk aversion $(\alpha \rightarrow 0)$
- constant absolute risk aversion ($r \rightarrow 0$)
- Arrow-Pratt Relative risk aversion

$$
\frac{-U^{\prime \prime}(x) \cdot x}{U^{\prime}(x)}=r+\alpha(1-r) x^{1-r}
$$

Relative Risk Aversion Estimation

Relative Risk Aversion Estimation

- To better fit the smooth probability profiles, we adopt a probabilistic choice rule where μ is a noise parameter:

$$
\operatorname{Prob}(\text { choose } A)=\frac{U_{A}^{1 / \mu}}{U_{A}^{1 / \mu}+U_{B}^{1 / \mu}}
$$

Relative Risk Aversion Estimation

- To better fit the smooth probability profiles, we adopt a probabilistic choice rule where μ is a noise parameter:

$$
\operatorname{Prob}(\text { choose } A)=\frac{U_{A}^{1 / \mu}}{U_{A}^{1 / \mu}+U_{B}^{1 / \mu}}
$$

- Maximum likelihood estimation for α, r, and μ

Relative Risk Aversion Estimate

	All	Subjective Weather		Precipitation		Clear-Overcast	
		Good	Bad	Good	Bad	Good	Bad
r	0.372	0.305	0.355	0.309	0.511	0.295	0.402
	[0.001]	[0.003]	[0.001]	[0.001]	[0.001]	[0.001]	[0.001]
α	0.146	0.106	0.172	0.109	0.330	0.084	0.200
	[0.001]	[0.001]	[0.001]	[0.000]	[0.002]	[0.000]	[0.001]
μ	0.132	0.212	0.112	0.145	0.078	0.156	0.115
	[0.000]	[0.001]	[0.000]	[0.000]	[0.000]	[0.000]	[0.000]
RRA	0.532	0.441	0.551	0.448	0.760	0.406	0.605
(Low Payoffs)			25.1\%		69.6\%		49.0\%
RRA	1.051	0.979	1.223	0.990	1.280	0.860	1.207
(High Payoffs)	97.5\% ${ }^{\dagger}$		24.9\%		29.2\%		40.3\%

Skewness

- Paired lotteries have same variance (and Kurtosis);
- Expected value for skewness reduction compensation.

Skewness MPL

	Option A	Option B
Decision 1:	\$1.00 w.p 10\% , \$3.00 w.p 90\%	\$0.20 w.p 90\% , \$2.20 w.p 10\%
Decision 2 :	\$1.00 w.p 20\% , \$3.00 w.p 80\%	\$0.20 w.p 80\% , \$2.20 w.p 20\%
Decision 3 :	\$1.00 w.p 30\% , \$3.00 w.p 70\%	\$0.20 w.p 70\% , \$2.20 w.p 30\%
Decision 4 :	\$1.00 w.p 40\% , \$3.00 w.p 60\%	\$0.20 w.p 60\% , \$2.20 w.p 40\%
Decision 5 :	\$1.00 w.p 50\% , \$3.00 w.p 50\%	\$0.20 w.p 50\% , \$2.20 w.p 50\%
Decision 6 :	\$1.00 w.p 60\% , \$3.00 w.p 40\%	\$0.20 w.p 40\% , \$2.20 w.p 60\%
Decision 7 :	\$1.00 w.p 70\% , \$3.00 w.p 30\%	\$0.20 w.p 30\% , \$2.20 w.p 70\%
Decision 8 :	\$1.00 w.p 80\% , \$3.00 w.p 20\%	\$0.20 w.p 20\% , \$2.20 w.p 80\%
Decision 9 :	\$1.00 w.p 90\% , \$3.00 w.p 10\%	\$0.20 w.p 10\% , \$2.20 w.p 90\%
Decision 10 :	\$1.00 w.p 100\%, \$3.00 w.p 0\%	\$0.20 w.p 0\% , \$2.20 w.p 100\%

Skewness moments

	Option A				Option B			
	Exp	Var	Skew	Kurt	Exp	Var	Skew	Kurt
Decision 1:	2.80	0.36	-2.67	8.11	0.40	0.36	2.67	8.11
Decision 2 :	2.60	0.64	-1.50	3.25	0.60	0.64	1.50	3.25
Decision 3 :	2.40	0.84	-0.87	1.76	0.80	0.84	0.87	1.76
Decision 4 :	2.20	0.96	-0.41	1.17	1.00	0.96	0.41	1.17
Decision 5 :	2.00	1.00	0.00	1.00	1.20	1.00	0.00	1.00
Decision 6 :	1.80	0.96	0.41	1.17	1.40	0.96	-0.41	1.17
Decision 7 :	1.60	0.84	0.87	1.76	1.60	0.84	-0.87	1.76
Decision 8 :	1.40	0.64	1.50	3.25	1.80	0.64	-1.50	3.25
Decision 9 :	1.20	0.36	2.67	8.11	2.00	0.36	-2.67	8.11
Decision 10 :	1.00	0.00	-	-	2.20	0.00	-	-

Skewness Aversion - Low payoffs

Panel A: Low Payoffs				
	One variable at a time	Precipitation + controls	Overcast-Clear + controls	Subjective Weather + controls
Precipitation	$0.042^{* *}$	0.042**		
Overcast-Clear	0.020		0.027*	
Subjective Weather (Bad-Good)	0.023			$0.032^{* *}$
Income	$0.003^{* * *}$	0.000	$0.004^{* * *}$	$0.004^{* * *}$
Religious	0.026	0.000	0.034	0.033
Political Leaning	-0.023	0.000	-0.018	-0.019

Skewness Aversion - High payoffs

Panel B: High Payoffs				
	One variable at a time	Precipitation + controls	Overcast-Clear + controls	Subjective Weather + controls
Precipitation	$0.051^{* * *}$	$0.051^{* * *}$		
Overcast-Clear	0.025*		$0.031^{* *}$	
Subjective Weather (Bad-Good)	$0.034^{* *}$			0.040**
Income	$0.001^{* *}$	0.000	$0.001^{* *}$	$0.001^{* * *}$
Religious	0.051*	0.000	$0.081^{* * *}$	$0.081^{* * *}$
Political Leaning	0.027	0.000	$0.058^{* *}$	0.057**

Concluding Remarks

- Bad weather \Rightarrow more risk aversion;

Concluding Remarks

- Bad weather \Rightarrow more risk aversion;
- Good weather \Rightarrow more risk seeking;

Concluding Remarks

- Bad weather \Rightarrow more risk aversion;
- Good weather \Rightarrow more risk seeking;
- Risk attitudes vary dramatically at high frequencies;

Concluding Remarks

- Bad weather \Rightarrow more risk aversion;
- Good weather \Rightarrow more risk seeking;
- Risk attitudes vary dramatically at high frequencies;
- Economic and financial consequences (consumption decisions, investments decisions, etc)!!!

