Á

The Term Structures of Co-Entropy in International Financial Markets

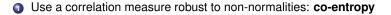
Fousseni Chabi-Yo

Ric Colacito

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

- One of the best established observations in international finance: int'l stochastic discount factors should be highly correlated
- Key for:
 - high correlation of stock mkt returns (despite low correlation of fundamentals)
 - relative smoothness of FX (relative to high vol of SDF's)
 - ...

- One of the best established observations in international finance: int'l stochastic discount factors should be highly correlated
- Key for:
 - high correlation of stock mkt returns (despite low correlation of fundamentals)
 - relative smoothness of FX (relative to high vol of SDF's)
 - ...
- Several int'l macro-finance model can account for this: Colacito and Croce (JPE, 2011); Lustig, Roussanov, and Verdelhan (RFS, 2011, JFE 2012); Stathopoulos (2013); Fahri and Gabaix (2013); ...



- Use a correlation measure robust to non-normalities: co-entropy
- Break-down total co-entropy into permanent and transitory components

- Use a correlation measure robust to non-normalities: co-entropy
- Break-down total co-entropy into permanent and transitory components
- Sook at co-entropies at multiple horizons

- Use a correlation measure robust to non-normalities: co-entropy
- Break-down total co-entropy into permanent and transitory components
- 3 Look at co-entropies at multiple horizons
- Confront models with a richer set of over-identifying restrictions

- Co-entropy of total SDF is high
- 2 Co-entropy of permanent SDF is high

What do we find?

- Co-entropy of total SDF is high
- Ocentropy of permanent SDF is high
- 3 Co-entropy of transitory components is:
 - low at short horizons
 - high at long horizons

What do we find?

- Co-entropy of total SDF is high
- Ocentropy of permanent SDF is high
- 3 Co-entropy of transitory components is:
 - low at short horizons
 - high at long horizons
- O No existing macro-finance model can account for this

- A rich set of identifying restrictions for international macro-finance models
- Models are usually focused on the contemporaneous correlation of shocks across countries
- We need to think harder about the inter-temporal correlation of shocks across countries

- Entropy bounds: Bansal and Lehmann (MD, 1997); Backus, Chernov, and Zin (JF, 2013); Bakshi and Chabi-Yo (JFE, 2012)
- **Decomposition of SDF**: Bansal and Lehmann (MD, 1997); Alvarez and Jermann (Ecta, 2005); Hansen (Ecta, 2012); Hansen and Scheinkman (Ecta, 2009).
- International Macro-Finance: Brandt, Cochrane, and Santa-Clara (JME, 2006); Verdelhan (JF, 2010); Colacito and Croce (JPE, 2011); Lustig, Stathopulos, and Verdelhan (WP, 2014); Lustig, Roussanov, and Verdelhan (RFS, 2011).

A generalized measure of correlation

$$\rho_{M^*,M} = 1 - \frac{L[M^*/M]}{L[M] + L[M^*]}$$

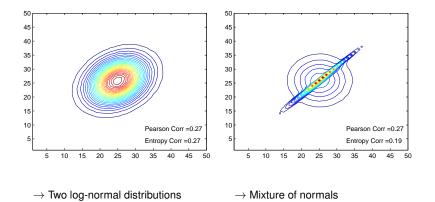
where

$$L[X] = \log E[X] - E[\log(X)]$$

 If SDF's are log-normally distributed: co-entropy is plain-vanilla correlation.

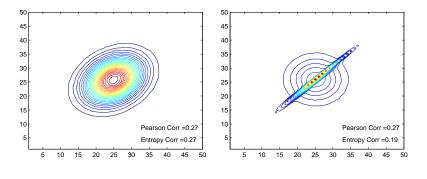
Models Conclu

An example



8/21

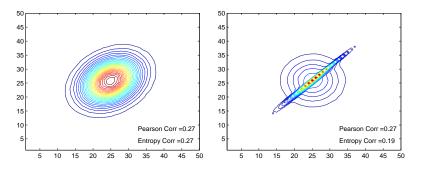
An example



- \rightarrow Two log-normal distributions
- ightarrow Identical correlation measures

 \rightarrow Mixture of normals

An example



 \rightarrow Two log-normal distributions \rightarrow Identical correlation measures

- \rightarrow Mixture of normals
- \rightarrow Co-entropy is more conservative

(Co-Entropy)

Lower Bound on the Co-Entropy of SDF's

$$ho_{M^*,M} \ge 1 - rac{L[\exp(\Delta e)]}{E[r_{ex}] + E[r_{ex}^*]}$$

Lower Bound on the Co-Entropy of SDF's

Bounds

$$\rho_{M^*,M} \geq 1 - \frac{\textit{L}[\exp(\Delta \textit{e})]}{\textit{E}[\textit{r}_{ex}] + \textit{E}[\textit{r}_{ex}^*]}$$

Co-Entropy is close to 1 if:

2 Equity risk premia are large

9/21

Lower Bound on the Co-Entropy of SDF's

$$\rho_{M^*,M} \geq 1 - \frac{\textit{L}[\exp(\Delta \textit{e})]}{\textit{E}[\textit{r}_{ex}] + \textit{E}[\textit{r}_{ex}^*]}$$

Co-Entropy is close to 1 if:

- 2 Equity risk premia are large
- Data?

Lower Bound on the Co-Entropy of SDF's (cont'd)

The lower bound is close to 1

	1	3	12	24	36	48	Slope
UK	0.96	0.95	0.93	0.94	0.94	0.95	-0.01
	(0.88, 1.00)	(0.73, 1.00)	(0.77, 1.00)	(0.77, 1.00)	(0.78, 1.00)	(0.79, 1.00)	[0.657]
CAN	0.99	0.98	0.98	0.98	0.98	0.97	-0.01
	(0.93, 1.00)	(0.90, 1.00)	(0.89, 1.00)	(0.92, 1.00)	(0.91, 1.00)	(0.91, 1.00)	[0.747]
JPN	0.94	0.91	0.88	0.86	0.85	0.85	-0.03
	(0.68, 1.00)	(0.55, 1.00)	(0.31, 1.00)	(0.23, 1.00)	(0.23, 1.00)	(0.27, 1.00)	[0.610]
FRA	0.96	0.95	0.94	0.93	0.93	0.94	-0.02
	(0.83, 1.00)	(0.71, 1.00)	(0.71, 1.00)	(0.68, 1.00)	(0.69, 1.00)	(0.72, 1.00)	[0.671]
GER	0.96	0.95	0.94	0.93	0.93	0.93	-0.02
	(0.86, 1.00)	(0.76, 1.00)	(0.76, 1.00)	(0.71, 1.00)	(0.69, 1.00)	(0.70, 1.00)	[0.687]
ITA	0.95	0.93	0.92	0.92	0.92	0.93	-0.02
	(0.72, 1.00)	(0.61, 1.00)	(0.58, 1.00)	(0.59, 1.00)	(0.61, 1.00)	(0.61, 1.00)	[0.611]
AUT	0.94	0.93	0.90	0.91	0.92	0.92	-0.01
	(0.71, 1.00)	(0.67, 1.00)	(0.51, 1.00)	(0.53, 1.00)	(0.56, 1.00)	(0.55, 1.00)	[0.574]
BEL	0.96	0.95	0.94	0.93	0.93	0.93	-0.03
	(0.85, 1.00)	(0.72, 1.00)	(0.74, 1.00)	(0.70, 1.00)	(0.72, 1.00)	(0.73, 1.00)	[0.707]
DEN	0.96	0.94	0.93	0.93	0.93	0.93	-0.02
	(0.77, 1.00)	(0.69, 1.00)	(0.66, 1.00)	(0.63, 1.00)	(0.64, 1.00)	(0.67, 1.00)	[0.623]
FIN	0.96	0.95	0.95	0.95	0.95	0.95	-0.01
	(0.77, 1.00)	(0.74, 1.00)	(0.78, 1.00)	(0.73, 1.00)	(0.73, 1.00)	(0.69, 1.00)	[0.618]
IRE	0.96	0.94	0.92	0.92	0.92	0.87	0.00
	(0.76, 1.00)	(0.73, 1.00)	(0.61, 1.00)	(0.62, 1.00)	(0.60, 1.00)	(-1.00, 1.00)	[0.530]
NED	0.96	0.95	0.94	0.94	0.94	0.95	-0.01
	(0.81, 1.00)	(0.71, 1.00)	(0.72, 1.00)	(0.70, 1.00)	(0.73, 1.00)	(0.74, 1.00)	[0.592]
NOR	0.97	0.95	0.94	0.95	0.95	0.95	-0.01
	(0.84, 1.00)	(0.72, 1.00)	(0.65, 1.00)	(0.68, 1.00)	(0.71, 1.00)	(0.78, 1.00)	[0.615]
SPA	0.96	0.94	0.93	0.92	0.92	0.93	-0.03
	(0.83, 1.00)	(0.71, 1.00)	(0.71, 1.00)	(0.69, 1.00)	(0.65, 1.00)	(0.67, 1.00)	[0.713]
SWE	0.97	0.95	0.95	0.95	0.95	0.96	-0.01
	(0.87, 1.00)	(0.76, 1.00)	(0.79, 1.00)	(0.84, 1.00)	(0.85, 1.00)	(0.86, 1.00)	[0.643]
SUI	0.95	0.94	0.93	0.93	0.94	0.95	-0.00
	(0.82, 1.00)	(0.67, 1.00)	(0.70, 1.00)	(0.72, 1.00)	(0.76, 1.00)	(0.79, 1.00)	[0.504]

• Bansal and Lehmann (1997) and Alvarez and Jermann (2005):

$$M = M^P \cdot M^T$$

- M^P is the growth rate of the permanent component (a martingale)
- *M^T* is the growth rate of the transitory component
- Measure M^T as the inverse of the return on infinity maturity bond (R^{∞})

• Bansal and Lehmann (1997) and Alvarez and Jermann (2005):

$$M = M^P \cdot M^T$$

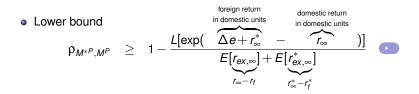
- M^P is the growth rate of the permanent component (a martingale)
- *M^T* is the growth rate of the transitory component
- Measure M^T as the inverse of the return on infinity maturity bond (R^{∞})
- Co-entropy of total SDF's can be decomposed as

$$\rho_{M^*,M} = \alpha_0 + \alpha_1 \cdot \rho_{M^{P^*},M^P} + \alpha_2 \cdot \rho_{M^{T},M^{*T}} + \alpha_3 \cdot \rho_{\frac{M^{P^*}}{M^{P^*}},\frac{M^{T}}{M^{T^*}}}$$

where α 's are entropy shares.

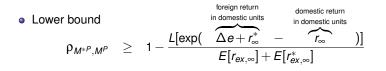
Models

Measurement of Co-entropy



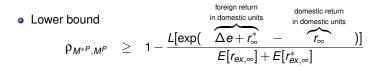
Measurement of Co-entropy

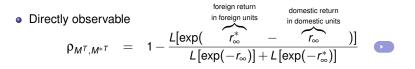
Bounds



Measurement of Co-entropy

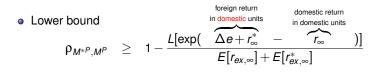
Bounds

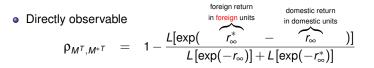




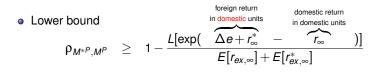
Models

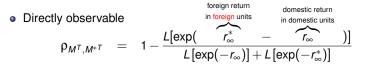
Measurement of Co-entropy





Measurement of Co-entropy



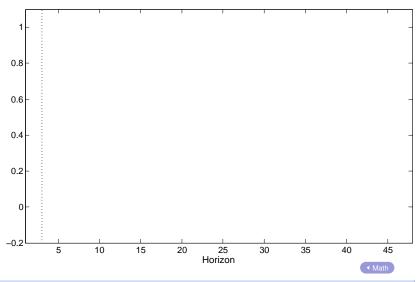


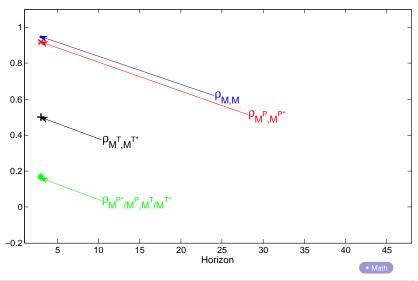
$$\rho_{\frac{M^{*P}}{M^{P}},\frac{M^{T}}{M^{*T}}} = 1 - \frac{L[\exp\left(\Delta e\right)]}{L[\exp\left(\Delta e + r_{\infty}^{*} - r_{\infty}\right)] + L[\exp\left(r_{\infty}^{*} - r_{\infty}\right)]}$$

▶ US & UK

- Large cross section of developed countries.
- Sample: January 1975 May 2013.
- Stock market returns: value-weighted returns in local currency.
- Risk-free rates: three-month interest rates on Government Bills.
- Long-term rates: ten-year interest rates on Government Bonds.
- CPI inflation: growth rate of the "Total Items" index in consecutive months.
- Exchange rates: units of foreign currency per US dollar.
- Real variables: nominal variables divided by realized CPI inflation.

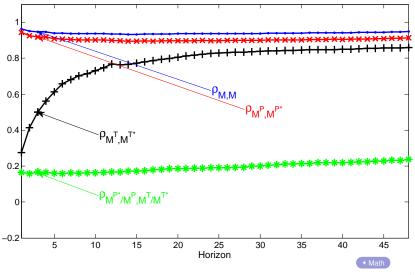
An example: US vs UK





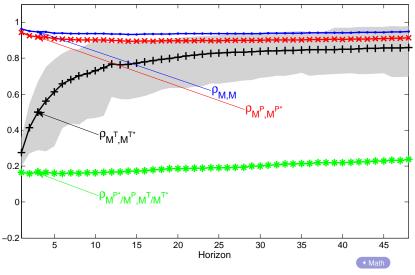
Introduction Co-Entropy Decomposition Bounds (Empirical Evidence) Models Conclusion

An example: US vs UK

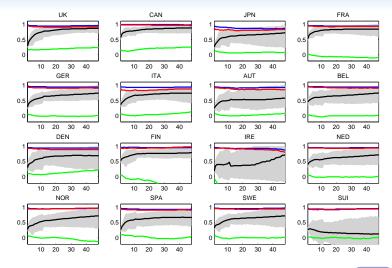


ntroduction Co-Entropy Decomposition Bounds (Empirical Evidence) Models Conclusion

An example: US vs UK



Other countries



► Model

Summary of empirical findings

Co-entropy of

- Total SDF's is large
- Permanent components of SDF's is large
- Transitory components of SDF's
 - Iow at short horizons
 - 2 sharply upward sloping

Summary of empirical findings

Co-entropy of

- Total SDF's is large
- Permanent components of SDF's is large
- Transitory components of SDF's

- low at short horizons
- 2 sharply upward sloping
- What's driving them?
 - \rightarrow Int'l correlation of long-term bonds:
 - in domestic units (e.g. all measured in \$) is high, no matter the horizon
 - in local units (e.g. measured in \$ and £) is
 - Low at short horizons
 - High at long horizons

- Can int'l macro finance models account for these findings?
- We look at several models:
 - the long-run risks model of Colacito and Croce (JPE, 2011)
 - the habits model of Verdelhan (JF, 2010)
 - the rare events model of Barro (QJE, 2006)
 - the reduced form model of Lustig, Roussanov, and Verdelhan (JFE, 2012)
 - ...
- None of them can match simultaneously the term structures of co-entropy.

A long-run risks model

Model setup

$$\begin{aligned} U_t &= (1-\delta)\log C_t + \delta\theta\log E_t \exp\left\{\frac{U_{t+1}}{\theta}\right\} \\ \Delta c_{t+1} &= \mu_c + x_t + \sigma_c \varepsilon_{c,t+1}, \\ x_t &= \rho x_{t-1} + \sigma_x \varepsilon_{x,t}, \end{aligned}$$

• SDF's and their components

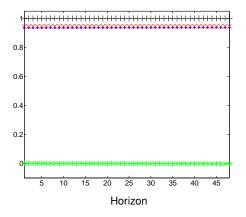
$$m_{t+1} - E[m_{t+1}] = -x_t + \frac{B\sigma_x}{\theta} \varepsilon_{x,t+1} + \left(\frac{1}{\theta} - 1\right) \sigma_c \varepsilon_{c,t+1},$$

$$m_{t+1}^T - E[m_{t+1}^T] = -x_t - \xi \sigma_x \varepsilon_{x,t+1},$$

$$m_{t+1}^P - E[m_{t+1}^P] = \left(\frac{B}{\theta} + \xi\right) \sigma_x \varepsilon_{x,t+1} + \left(\frac{1}{\theta} - 1\right) \sigma_c \varepsilon_{c,t+1}$$

H 18 / 21

Term Structures of Co-Entropy

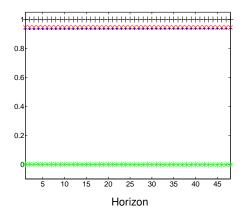


▲ Data

(Models)

Conclusion

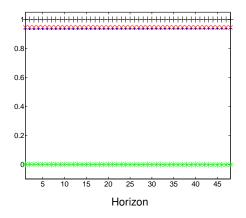
Term Structures of Co-Entropy



• $\rho_{M^*,M}$ is high

 \mathbf{Z}

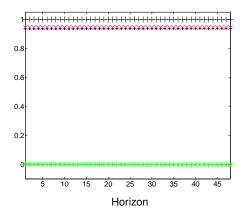
Term Structures of Co-Entropy



• $\rho_{M^*,M}$ is high

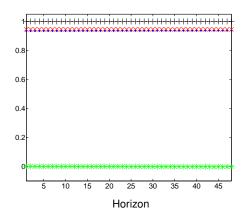
 \mathbf{Z}

Term Structures of Co-Entropy



- $\rho_{M^*,M}$ is high
- $\times \, \rho_{\textit{M}^{\textit{P}*},\textit{M}^{\textit{P}}}$ is high

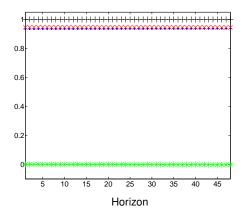
Term Structures of Co-Entropy



• $\rho_{M^*,M}$ is high \square $\times \rho_{M^{P*},M^P}$ is high \square

(Models)

Term Structures of Co-Entropy

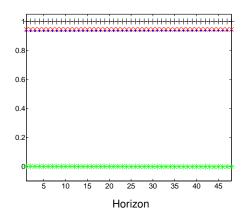


• $\rho_{M^*,M}$ is high \square $\times \rho_{M^{P*},M^P}$ is high \square $* \rho_{M^{P*}/M^P,M^T/M^{T*}}$ is low

Models

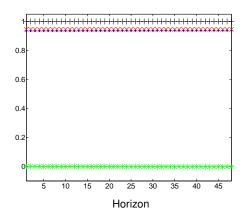
Conclusion

Term Structures of Co-Entropy



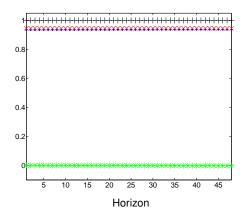
 $\begin{array}{ll} \bullet \ \rho_{M^*,M} \text{ is high} & $$\ensuremath{\square}$ \\ \times \ \rho_{M^{P*},M^P} \text{ is high} & $$\ensuremath{\square}$ \\ \ast \ \rho_{M^{P*}/M^P,M^T/M^{T*}} \text{ is low} & $$\ensuremath{\square}$ \end{array}$

Term Structures of Co-Entropy



• $\rho_{M^*,M}$ is high	\checkmark
$\times \rho_{{M^{P*}},{M^P}}$ is high	\checkmark
$*\rho_{\textit{M}^{\textit{P}*}/\textit{M}^{\textit{P}},\textit{M}^{\textit{T}}/\textit{M}^{\textit{T}*}}$ is low	\checkmark
$+ \rho_{\textit{M}^{\textit{T}*},\textit{M}^{\textit{T}}}$ is high and flat	

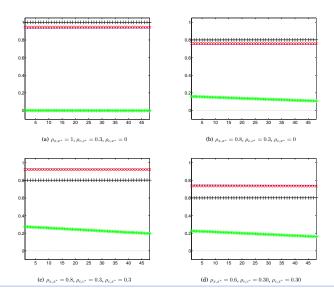
Term Structures of Co-Entropy



• $\rho_{M^*,M}$ is high	\mathbf{V}
$\times \rho_{\textit{M}^{\textit{P}*},\textit{M}^{\textit{P}}}$ is high	
$* \rho_{M^{P*}/M^{P},M^{T}/M^{T*}}$ is low	\checkmark
$+ ho_{M^{\mathcal{T}*},M^{\mathcal{T}}}$ is high and flat	X

(Models)

Changing Calibrations: same story...



- 20/21

Models

(Conclusion)

Concluding Remarks

What we learned:

- A novel measure of correlation (co-entropy)
- A formal decomposition of the sources of int'l co-entropy
- Shapes of term-structures of co-entropy are very robust in the cross-section of countries

What we would like to learn:

- Is there a model that can explain all of these moments?
- We need to think harder about the int'l transmission of shocks across countries and across dates

Introduction

Á

Co-Entropy

Decomposition

Bounds

Empirical Evidence

Models

Conclusion

Back-up Slides

1/4

Models

(Conclusion)

Details on Coentropy bound

• Consider:

$$ho_{M^*,M} = 1 - rac{L[M^*/M]}{L[M] + L[M^*]}$$

Consider:

$$\rho_{M^*,M} = 1 - \frac{L[M^*/M]}{L[M] + L[M^*]}$$

• By no-arbitrage $\exp(\Delta e) = M^*/M$:

$$\rho_{M^*,M} = 1 - \frac{L[\exp(\Delta e)]}{L[M] + L[M^*]}$$

• Consider:

$$\rho_{M^*,M} = 1 - \frac{L[M^*/M]}{L[M] + L[M^*]}$$

• By no-arbitrage
$$\exp(\Delta e) = M^*/M$$
:

$$\rho_{M^*,M} = 1 - \frac{L[\exp(\Delta e)]}{L[M] + L[M^*]}$$

Bansal and Lehmann's entropy bound L[M] ≥ E[r_{ex}]:

$$\rho_{M^*,M} \ge 1 - \frac{L[\exp(\Delta e)]}{E[r_{ex}] + E[r_{ex}^*]}$$

Conclusion

Details on Coentropy bound (M^P)

Consider:

$$p_{M^{P*},M^{P}} = 1 - \frac{L\left[M^{*}/M \cdot M^{T}/M^{T*}\right]}{L[M^{P}] + L[M^{P*}]}$$

Details on Coentropy bound (M^P)

Consider:

$$\rho_{M^{P*},M^P} = 1 - \frac{L\left[M^*/M \cdot M^T/M^{T*}\right]}{L[M^P] + L[M^{P*}]}$$

• By no-arbitrage $\exp(\Delta e) = M^*/M$:

$$\rho_{M^{P*},M^{P}} = 1 - \frac{L\left[\exp(\Delta e) \cdot M^{T}/M^{T*}\right]}{L[M^{P}] + L[M^{P*}]}$$

Details on Coentropy bound (M^P)

Consider:

$$\rho_{M^{P*},M^{P}} = 1 - \frac{L\left[M^{*}/M \cdot M^{T}/M^{T*}\right]}{L[M^{P}] + L[M^{P*}]}$$

• By no-arbitrage $\exp(\Delta e) = M^*/M$:

$$\rho_{M^{P*},M^{P}} = 1 - \frac{L\left[\exp(\Delta e) \cdot M^{T}/M^{T*}\right]}{L[M^{P}] + L[M^{P*}]}$$

Alvarez and Jermann's entropy bound L[M^P] ≥ E[r_{ex,∞}]:

$$\rho_{M^{P*},M^{P}} \geq 1 - \frac{L\left[exp(\Delta e) \cdot M^{T}/M^{T*}\right]}{E[r_{ex,\infty}] + E[r_{ex,\infty}^{*}]}$$

Details on Coentropy bound (M^P)

Consider:

$$\rho_{M^{P*},M^{P}} = 1 - \frac{L\left[M^{*}/M \cdot M^{T}/M^{T*}\right]}{L[M^{P}] + L[M^{P*}]}$$

• By no-arbitrage
$$\exp(\Delta e) = M^*/M$$
:

$$\rho_{M^{P*},M^{P}} = 1 - \frac{L\left[\exp(\Delta e) \cdot M^{T}/M^{T*}\right]}{L[M^{P}] + L[M^{P*}]}$$

Alvarez and Jermann's entropy bound L[M^P] ≥ E[r_{ex,∞}]:

$$\rho_{M^{P*},M^{P}} \geq 1 - \frac{L\left[\exp(\Delta e) \cdot M^{T}/M^{T*}\right]}{E[r_{\text{ex},\infty}] + E[r_{\text{ex},\infty}^{*}]}$$

• Since
$$M^T = 1/R_{\infty}$$
:

$$\rho_{M^{P*},M^P} \ge 1 - \frac{L[\exp(\Delta e + r_{\infty}^* - r_{\infty})]}{E[r_{ex,\infty}] + E[r_{ex,\infty}^*]}$$

• Consider:

$$\rho_{M^T,M^{T*}} = 1 - \frac{L\left[M^T/M^{T*}\right]}{L[M^T] + L[M^{T*}]}$$

▲ Back

• Consider:

$$\rho_{M^{T},M^{T*}} = 1 - \frac{L\left[M^{T}/M^{T*}\right]}{L[M^{T}] + L[M^{T*}]}$$

• Since
$$M^T = 1/R_{\infty}$$
:

$$\rho_{M^{T},M^{T*}} = 1 - \frac{L[\exp(r_{\infty}^{*} - r_{\infty})]}{L[\exp(-r_{\infty}^{*})] + L[\exp(-r_{\infty})]}$$

	cl	