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@ One of the best established observations in international finance: int’l
stochastic discount factors should be highly correlated

o Key for:

o high correlation of stock mkt returns (despite low correlation of
fundamentals)
o relative smoothness of FX (relative to high vol of SDF’s)

o ...
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Motivation

@ One of the best established observations in international finance: int'l
stochastic discount factors should be highly correlated

o Key for:

o high correlation of stock mkt returns (despite low correlation of
fundamentals)
o relative smoothness of FX (relative to high vol of SDF’s)

@ Several int'| macro-finance model can account for this: Colacito and
Croce (JPE, 2011); Lustig, Roussanov, and Verdelhan (RFS, 2011,
JFE 2012); Stathopoulos (2013); Fahri and Gabaix (2013); ...
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@ Use a correlation measure robust to non-normalities: co-entropy

@ Break-down total co-entropy into permanent and transitory
components

@ Look at co-entropies at multiple horizons

@ Confront models with a richer set of over-identifying restrictions
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@ Co-entropy of permanent SDF is high
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@ Co-entropy of total SDF is high
@ Co-entropy of permanent SDF is high

© Co-entropy of transitory components is:

o low at short horizons
o high at long horizons

@ No existing macro-finance model can account for this
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Where does this leave us?

o Arich set of identifying restrictions for international macro-finance
models

@ Models are usually focused on the contemporaneous correlation of
shocks across countries

@ We need to think harder about the inter-temporal correlation of shocks
across countries
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Related Literature

o Entropy bounds: Bansal and Lehmann (MD, 1997); Backus, Chernov,
and Zin (JF, 2013); Bakshi and Chabi-Yo (JFE, 2012)

o Decomposition of SDF: Bansal and Lehmann (MD, 1997); Alvarez and
Jermann (Ecta, 2005); Hansen (Ecta, 2012); Hansen and Scheinkman
(Ecta, 2009).

o International Macro-Finance: Brandt, Cochrane, and Santa-Clara
(JME, 2006); Verdelhan (JF, 2010); Colacito and Croce (JPE, 2011);
Lustig, Stathopulos, and Verdelhan (WP, 2014); Lustig, Roussanov, and
Verdelhan (RFS, 2011).
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@ A generalized measure of correlation

_ o, Liv/m)
P = L L

where
L[X] = logE[X]— E[log(X)]

o If SDF’s are log-normally distributed: co-entropy is plain-vanilla
correlation.
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— Two log-normal distributions
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— Mixture of normals
— Co-entropy is more conservative

8/21



. _ _Llexp(Ae)]
Pmm =1 = i Tl

9/21




Llexp(Ae)]
S S T )

@ Co-Entropy is close to 1 if:

@ FXis smooth
@ Equity risk premia are large
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@ Co-Entropy is close to 1 if:

@ FXis smooth
@ Equity risk premia are large

o Data?
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The lower bound is close to 1

1 3 12 24 36 48 Slope

UK 0.96 0.95 0.93 0.94 0.94 0.95 —0.01
(0.88,1.00) (0.73,1.00) (0.77,1.00) (0.77,1.00) (0.78,1.00) (0.79,1.00) 0.657]

CAN 0.99 0.98 0.98 0.98 0.98 0.97 —0.01
(0.93,1.00) (0.90,1.00) (0.89,1.00) (0.92,1.00) (0.91,1.00) (0.91,1.00) 0.747]
JPN 0.94 0.91 0.88 0.86 0.85 0.85 —0.03
(0.68,1.00) (0.55,1.00) (031,1.00) (0.23,1.00) (0.23,1.00) (0.27,1.00) [0.610]
FRA 0.96 0.95 0.94 0.93 0.93 0.94 —0.02
(0.83,1.00) (0.71,1.00) (0.71,1.00) (0.68,1.00) (0.69,1.00) (0.72,1.00) [0671]
GER 0.96 0.95 0.94 0.93 0.93 0.93 —0.02
(0.86,1.00) (0.76,1.00) (0.76,1.00) (0.71,1.00) (0.69,1.00) (0.70,1.00) [0.687]
ITA 0.95 0.93 0.92 0.92 0.92 0.93 —0.02
(0.72,1.00) (0.61,1.00) (0.58,1.00) (0.59,1.00) (0.61,1.00) (0.61,1.00) [0.611]

AUT 0.94 0.93 0.90 0.91 0.92 0.92 —0.01
(0.71,1.00) (0.67,1.00) (051,1.00) (0.53,1.00) (0.56,1.00) (0.55,1.00) 0.574]
BEL 0.96 0.95 0.94 0.93 0.93 0.93 —0.03
(0.85,1.00) (0.72,1.00) (0.74,1.00) (0.70,1.00) (0.72,1.00) (0.73,1.00) [0.707]
DEN 0.96 0.94 0.93 0.93 0.93 0.93 —0.02
(0.77,1.00) (0.69,1.00) (0.66,1.00) (0.63,1.00) (0.64,1.00) (0.67,1.00) [0.623]

FIN 0.96 0.95 0.95 0.95 0.95 0.95 —0.01
(0.77,1.00) (0.74,1.00) (0.78,1.00) (0.73,1.00) (0.73,1.00) (0.69,1.00) [0.618]

IRE 0.96 0.94 0.92 0.92 0.92 0.87 0.00
(0.76,1.00) (0.73,1.00) (0.61,1.00) (0.62,1.00) (0.60,1.00) (~1.00,1.00) [0.530]

NED 0.96 0.95 0.94 0.94 0.94 0.95 —0.01
(0.81,1.00) (0.71,1.00) (0.72,1.00) (0.70,1.00) (0.73,1.00) (0.74,1.00) 0.592]

NOR 0.97 0.95 0.94 0.95 0.95 0.95 —0.01
(0.84,1.00) (0.72,1.00) (0.65,1.00) (0.68,1.00) (0.71,1.00) (0.78,1.00) [0615]
SPA 0.96 0.94 0.93 0.92 0.92 0.93 —0.03
(0.83,1.00) (0.71,1.00) (0.71,1.00) (0.69,1.00) (0.65,1.00) (0.67,1.00) [0.713]

SWE 0.97 0.95 0.95 0.95 0.95 0.96 —0.01
(0.87,1.00) (0.76,1.00) (0.79,1.00) (0.84,1.00) (0.85,1.00) (0.56,1.00) [0.643]
SUT 0.95 0.94 0.93 0.93 0.94 0.95 —0.00
(0.82,1.00) (0.67,1.00) (0.70,1.00) (0.72,1.00) (0.76,1.00) (0.79,1.00) [0.504]
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@ Bansal and Lehmann (1997) and Alvarez and Jermann (2005):

M=mMm"-MmM"

o MPis the growth rate of the permanent component (a martingale)
o MT is the growth rate of the transitory component
o Measure M7 as the inverse of the return on infinity maturity bond (R*)
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Decomposition

@ Bansal and Lehmann (1997) and Alvarez and Jermann (2005):
M=MP-m"
o MP is the growth rate of the permanent component (a martingale)

o MT is the growth rate of the transitory component
o Measure M7 as the inverse of the return on infinity maturity bond (R™)

o Co-entropy of total SDF’s can be decomposed as

Pmsm = Olo + 0t - Ppyps gy 02 - Py g7 03 - P yype 7
mP -,MT*

where oUs are entropy shares.
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foreign return

domestic return

o Lower bound in domestic units in domestic units
0 - Llexp( Ae+r; - [ )]
«P pP = -
MP M Elrex.co] + E[rgy o]

foreign return domestic return

-] Directly observable in foreign units in domestic units
L[exp( rk - [ )]
Llexp(—r.)] + L[exp(—rz)]

pMT,M*T = 1

Llexp(Ae)]
Pur w1 = 11—
M Llexp(Ae+ri —ro)]+ Llexp(r — r)]
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Co-Entropy Decomposition Bounds Empirical Evidence Models Conclusion

Large cross section of developed countries.

Sample: January 1975 — May 2013.

Stock market returns: value-weighted returns in local currency.

Risk-free rates: three-month interest rates on Government Bills.
Long-term rates: ten-year interest rates on Government Bonds.

CPl inflation: growth rate of the “Total ltems” index in consecutive
months.

Exchange rates: units of foreign currency per US dollar.

Real variables: nominal variables divided by realized CPI inflation.

13/21




06 : .

02} - i

-0.2 S ! | | |
5 10 15 20 25 30 35 40 45

Horizon

14/21




0.6f Puvm |

0.4 )
Py M

[/

o Py M |

|
5 10 15 20 25 30 35 40 45

Horizon

14/21




1 .
S
y \ R L L
0.6 pM,M |
PvP m™
0.4 . |
pMT’MT
0.2 .
0 PrP P T |
—0.2 : : : L ! | | | |
5 10 15 20 25 30 35 20 e
Horizon

14/21




n examplie: VS

0 Py M |

-0.2 ! ! | | |
5 10 15 20 25 30 35 40 45

Horizon

14/21




Introduction

Co-Entropy

Decomposition

Bounds

Other countries
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@ Co-entropy of

o Total SDF’s is large
o Permanent components of SDF’s is large
o Transitory components of SDF’s

@ low at short horizons
@ sharply upward sloping
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Introduction Co-Entropy Decomposition Bounds Model: (e

Summary of empirical findings

o Co-entropy of

o Total SDF’s is large

o Permanent components of SDF’s is large
o Transitory components of SDF’s

@ low at short horizons
@ sharply upward sloping

o What's driving them?

— Int’l correlation of long-term bonds:

o in domestic units (e.g. all measured in $) is high, no matter the horizon
o inlocal units (e.g. measured in $ and £) is

@ Low at short horizons

@ High at long horizons
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Macro-Finance Models

@ Can int'l macro finance models account for these findings?
o We look at several models:

o the long-run risks model of Colacito and Croce (JPE, 2011)

o the habits model of Verdelhan (JF, 2010)

o the rare events model of Barro (QJE, 2006)

o the reduced form model of Lustig, Roussanov, and Verdelhan (JFE, 2012)

@ None of them can match simultaneously the term structures of
co-entropy.
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o Model setup

U,
U = (1-29)log Ct—i—SBIogEtexp{ t(-;ﬂ }
Aciy1 = He+ X +Oc€cir1,
Xt = PXt—1 +OxEx,

o SDF’s and their components

Bo, 1
M — E[mea] = —x+ 0 —Ze, 1+ (9 1) OcEe t+1,
mL_1 —E [mtT+1] = —x—&EO0xEx 111,
B 1
mﬁH —E [th+1] = (6 +§> OxEx,t+1 + (6 - 1) Gc€e,t i1
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Concluding Remarks

What we learned:
@ A novel measure of correlation (co-entropy)
o A formal decomposition of the sources of int’l co-entropy

@ Shapes of term-structures of co-entropy are very robust in the
cross-section of countries

What we would like to learn:
o Is there a model that can explain all of these moments?

o We need to think harder about the int’l transmission of shocks across
countries and across dates
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o Consider:

LM /M)

% = 1 —_——_—
Pu.m L[M] + L[M]
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@ Consider:
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o By no-arbitrage exp(Ae) = M* /M:
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o Bansal and Lehmann’s entropy bound L[M] > E[re]:
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o Consider:
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P = LM LM
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o Consider:
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o By no-arbitrage exp(Ae) = M* /M:
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P T LM+ LW

o Alvarez and Jermann’s entropy bound L[MF] > E[rey «):

L [exp(Ae)-MT /MT]

Px pP Z 1—
P Elroc] + Elriy o]
o Since M" =1/R.:
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o Consider:

PUTM = LM+ L]
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o Consider:
PmT M = L[MT] T L[MT*]

o Since MT =1/R..:

B Llexp(rs —r.)]
Lexp(—rz)] + L{exp(—r..)]

pMT,MT* =1
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