Testing and valuing dynamic correlations for asset allocation

Riccardo Colacito and Robert Engle

Goal of the paper

- What is it worth to an investor to have a correct covariance matrix?
- Can these benefits be used to statistically discriminate between covariance matrices with real data?

Our approach

 Each day, minimize portfolio variance subject to a required return, assuming a risk free rate and allowing short positions:

$$\min_{w_t} \qquad w'_t H_{t/t-1} w_t$$
$$s.t. \qquad w'_t \mu_{t/t-1} \ge \mu_0$$

Our approach

 Each day, minimize portfolio variance subject to a required return, assuming a risk free rate and allowing short positions:

$$\min_{w_t} \quad w'_t H_{t/t-1} w_t$$

s.t.
$$w'_t \mu_{t/t-1} \ge \mu_0$$

- We need to estimate:
 - 1. Covariance matrices
 - 2. Expected returns

Our approach

 Each day, minimize portfolio variance subject to a required return, assuming a risk free rate and allowing short positions:

$$\min_{w_t} \qquad w'_t H_{t/t-1} w_t$$

s.t.
$$w'_t \mu_{t/t-1} \ge \mu_0$$

- We need to estimate:
 - 1. Covariance matrices
 - 2. Expected returns
- How can we evaluate the quality of covariance matrix forecasts without knowing expected returns?

1. Use ex-post mean returns:

- Fleming, Kirby, and Ostdiek (2001)
- Elton and Gruber (1973)
- Cumby, Figlewski and Hasbrouck (1994)

1. Use ex-post mean returns:

- Fleming, Kirby, and Ostdiek (2001)
- Elton and Gruber (1973)
- Cumby, Figlewski and Hasbrouck (1994)

But expected returns are not the same as realized mean returns.

1. Use ex-post mean returns:

- Fleming, Kirby, and Ostdiek (2001)
- Elton and Gruber (1973)
- Cumby, Figlewski and Hasbrouck (1994)

But expected returns are not the same as realized mean returns.

- 2. Minimum variance or minimum tracking error portfolio:
 - Chan, Karceski, Lakonishok (1999)

1. Use ex-post mean returns:

- Fleming, Kirby, and Ostdiek (2001)
- Elton and Gruber (1973)
- Cumby, Figlewski and Hasbrouck (1994)

But expected returns are not the same as realized mean returns.

- 2. Minimum variance or minimum tracking error portfolio:
 - Chan, Karceski, Lakonishok (1999)

But this is equivalent to assume that all asset have the same expected return.

1. Use ex-post mean returns:

- Fleming, Kirby, and Ostdiek (2001)
- Elton and Gruber (1973)
- Cumby, Figlewski and Hasbrouck (1994)

But expected returns are not the same as realized mean returns.

- 2. Minimum variance or minimum tracking error portfolio:
 - Chan, Karceski, Lakonishok (1999)

But this is equivalent to assume that all asset have the same expected return.

3. They test the joint hypothesis of correct specification of mean and variance.

1. Use ex-post mean returns:

- Fleming, Kirby, and Ostdiek (2001)
- Elton and Gruber (1973)
- Cumby, Figlewski and Hasbrouck (1994)

But expected returns are not the same as realized mean returns.

- 2. Minimum variance or minimum tracking error portfolio:
 - Chan, Karceski, Lakonishok (1999)

But this is equivalent to assume that all asset have the same expected return.

- 3. They test the joint hypothesis of correct specification of mean and variance.
- 4. We use constant expected returns and repeat the analysis for a number of possible vectors.

Outline of the talk

- Proposed strategy.
- One way of estimating covariance matrices: Dynamic Conditional Correlation (DCC).
- Results: in sample and simulations.
- More advanced questions and ongoing research.

The solution is

$$w_t = \frac{H_t^{-1}\mu}{\mu' H_t^{-1}\mu}\mu_0$$

- This solution always exists provided that H_t is positive definite and the required returns is nonnegative.
- But suppose that H_t is not the true covariance matrix...

• If Ω_t is the true covariance, the minimized volatility is

$$\frac{\sigma_t^H}{\mu_0} = \frac{\sqrt{\mu' H_t^{-1} \Omega_t H_t^{-1} \mu}}{\mu' H_t^{-1} \mu}$$

• If Ω_t is the true covariance, the minimized volatility is

$$\frac{\sigma_t^H}{\mu_0} = \frac{\sqrt{\mu' H_t^{-1} \Omega_t H_t^{-1} \mu}}{\mu' H_t^{-1} \mu}$$

• An investor using Ω_t would have volatility

$$\frac{\sigma_t^{\Omega}}{\mu_0} = \frac{1}{\sqrt{\mu'\Omega_t^{-1}\mu}}$$

• If Ω_t is the true covariance, the minimized volatility is

$$\frac{\sigma_t^H}{\mu_0} = \frac{\sqrt{\mu' H_t^{-1} \Omega_t H_t^{-1} \mu}}{\mu' H_t^{-1} \mu}$$

• An investor using Ω_t would have volatility

$$\frac{\sigma_t^{\Omega}}{\mu_0} = \frac{1}{\sqrt{\mu'\Omega_t^{-1}\mu}}$$

It is easy to show that:

$$rac{\sigma_t^H}{\mu_0} \geq rac{\sigma_t^\Omega}{\mu_0}$$

• If Ω_t is the true covariance, the minimized volatility is

$$\frac{\sigma_t^H}{\mu_0} = \frac{\sqrt{\mu' H_t^{-1} \Omega_t H_t^{-1} \mu}}{\mu' H_t^{-1} \mu}$$

• An investor using Ω_t would have volatility

$$\frac{\sigma_t^{\Omega}}{\mu_0} = \frac{1}{\sqrt{\mu'\Omega_t^{-1}\mu}}$$

It is easy to show that:

$$\frac{\sigma_t}{\mu_0^H} \geq \frac{\sigma_t}{\mu_0^\Omega}$$

The investor with the correct covariance matrix can achieve the same volatility and a higher required return. Setting volatilities equal:

$$\frac{\mu_0^{\Omega}}{\mu_0^H} = \frac{\sqrt{\left(\mu' H_t^{-1} \Omega_t H_t^{-1} \mu\right) \left(\mu' \Omega_t^{-1} \mu\right)}}{\mu' H_t^{-1} \mu} \ge 1$$

The investor with the correct covariance matrix can achieve the same volatility and a higher required return. Setting volatilities equal:

$$\frac{\mu_0^{\Omega}}{\mu_0^H} = \frac{\sqrt{\left(\mu' H_t^{-1} \Omega_t H_t^{-1} \mu\right) \left(\mu' \Omega_t^{-1} \mu\right)}}{\mu' H_t^{-1} \mu} \ge 1$$

 The ratio of required excess returns giving equal volatility is always larger than 1 for any vector of expected returns.

The investor with the correct covariance matrix can achieve the same volatility and a higher required return. Setting volatilities equal:

$$\frac{\mu_0^{\Omega}}{\mu_0^H} = \frac{\sqrt{\left(\mu' H_t^{-1} \Omega_t H_t^{-1} \mu\right) \left(\mu' \Omega_t^{-1} \mu\right)}}{\mu' H_t^{-1} \mu} \ge 1$$

- The ratio of required excess returns giving equal volatility is always larger than 1 for any vector of expected returns.
- Gains will depend upon the choice of μ .

The investor with the correct covariance matrix can achieve the same volatility and a higher required return. Setting volatilities equal:

$$\frac{\mu_0^{\Omega}}{\mu_0^H} = \frac{\sqrt{\left(\mu' H_t^{-1} \Omega_t H_t^{-1} \mu\right) \left(\mu' \Omega_t^{-1} \mu\right)}}{\mu' H_t^{-1} \mu} \ge 1$$

- The ratio of required excess returns giving equal volatility is always larger than 1 for any vector of expected returns.
- Gains will depend upon the choice of μ .
- A costless mistake: if μ is an eigenvector of ΩH^{-1} using the wrong covariance matrix is costless.

Financial Econometrics Conference - Waterloo: March 18, 2005 - p. 9/3

A costless mistake

Proposed strategy

 For a vector of expected returns, and a conditional covariance matrix, calculate the optimal weights and the subsequent portfolio return.

Proposed strategy

- For a vector of expected returns, and a conditional covariance matrix, calculate the optimal weights and the subsequent portfolio return.
- Choose covariance matrices that achieve lowest portfolio variance for all relevant expected returns.

Proposed strategy

- For a vector of expected returns, and a conditional covariance matrix, calculate the optimal weights and the subsequent portfolio return.
- Choose covariance matrices that achieve lowest portfolio variance for all relevant expected returns.
- Use the approach of Diebold and Mariano (1995) to test that a method is significantly better than another.

• Pick a vector of expected returns μ_k .

- Pick a vector of expected returns μ_k .
- The realized variance of portfolios constructed using estimators H_t^1 and H_t^2 is

$$u_{k,t} = (w'_{1,k,t}r_t)^2 - (w'_{2,k,t}r_t)^2$$

- Pick a vector of expected returns μ_k .
- The realized variance of portfolios constructed using estimators H_t^1 and H_t^2 is

$$u_{k,t} = (w'_{1,k,t}r_t)^2 - (w'_{2,k,t}r_t)^2$$

• Diebold and Mariano (1995) test $\xi = 0$ by least squares using HAC standard errors:

$$u_{k,t} = \xi + \varepsilon_{k,u,t}$$

- Pick a vector of expected returns μ_k .
- The realized variance of portfolios constructed using estimators H_t^1 and H_t^2 is

$$u_{k,t} = (w'_{1,k,t}r_t)^2 - (w'_{2,k,t}r_t)^2$$

• Diebold and Mariano (1995) test $\xi = 0$ by least squares using HAC standard errors:

$$u_{k,t} = \xi + \varepsilon_{k,u,t}$$

• We also consider a weighted version of the test

$$\frac{\left(w_{1,t}'r_{t}\right)^{2} - \left(w_{2,t}'r_{t}\right)^{2}}{\sqrt{\left(\mu'H_{1,t}^{-1}\mu\right)\left(\mu'H_{2,t}^{-1}\mu\right)}} = \xi + \varepsilon_{k,v,t}$$

Joint test of equality of two models

Stack differences into vectors

$$U_t = (u_{1,t}, ..., u_{K,t})'$$
$$V_t = (v_{1,t}, ..., v_{K,t})'$$

Use GMM with vector HAC to estimate

$$U_t = \beta_u \iota + \varepsilon_{u,t}$$
$$V_t = \beta_v \iota + \varepsilon_{v,t}$$

- Under the null β_u and β_v are both equal to zero.
- If the null is rejected we can see which way it is rejected.

Dynamic Conditional Correlation (DCC

 DCC model is a new type of multivariate GARCH model that is particularly convenient for big systems. See Engle(2002) or Engle(2004).

Dynamic Conditional Correlation (DCC

- DCC model is a new type of multivariate GARCH model that is particularly convenient for big systems. See Engle(2002) or Engle(2004).
- Motivation: the conditional correlation of two returns with mean zero is

$$\rho_t = \frac{E_{t-1}[r_{1,t}r_{2,t}]}{\sqrt{E_{t-1}[r_{1,t}^2]E_{t-1}[r_{2,t}^2]}}$$

Dynamic Conditional Correlation (DCC

- DCC model is a new type of multivariate GARCH model that is particularly convenient for big systems. See Engle(2002) or Engle(2004).
- Motivation: the conditional correlation of two returns with mean zero is

$$\rho_t = \frac{E_{t-1}[r_{1,t}r_{2,t}]}{\sqrt{E_{t-1}[r_{1,t}^2]E_{t-1}[r_{2,t}^2]}}$$

• If
$$r_{i,t} = \sqrt{h_{i,t}} \varepsilon_{i,t}$$
, with $E_{t-1}[h_{i,t}] = h_{i,t}$, $\forall i = 1, 2$

$$\rho_t = \frac{E_{t-1}[\varepsilon_{1,t}\varepsilon_{2,t}]}{\sqrt{E_{t-1}[\varepsilon_{1,t}^2]E_{t-1}[\varepsilon_{2,t}^2]}}$$

1. Estimate volatilities for each asset and compute the standardized residuals.

- 1. Estimate volatilities for each asset and compute the standardized residuals.
 - E.g. each asset follows a GARCH process

$$r_{i,t} = \sqrt{h_{i,t}} \varepsilon_{i,t}, \quad \varepsilon_{i,t} \sim_{i.i.d.} \mathcal{N}(0,1)$$

$$h_{i,t} = \alpha + \beta h_{i,t-1} + \gamma r_{i,t-1}^2$$

- 1. Estimate volatilities for each asset and compute the standardized residuals.
 - E.g. each asset follows a GARCH process

$$r_{i,t} = \sqrt{h_{i,t}} \varepsilon_{i,t}, \quad \varepsilon_{i,t} \sim_{i.i.d.} \mathcal{N}(0,1)$$

$$h_{i,t} = \alpha + \beta h_{i,t-1} + \gamma r_{i,t-1}^2$$

2. Estimate the covariances between these using a ML criterion and one of several models for the correlations.

- 1. Estimate volatilities for each asset and compute the standardized residuals.
 - E.g. each asset follows a GARCH process

$$r_{i,t} = \sqrt{h_{i,t}} \varepsilon_{i,t}, \quad \varepsilon_{i,t} \sim_{i.i.d.} \mathcal{N}(0,1)$$

$$h_{i,t} = \alpha + \beta h_{i,t-1} + \gamma r_{i,t-1}^2$$

2. Estimate the covariances between these using a ML criterion and one of several models for the correlations.
• E.g. Mean reverting DCC:

$$Q_{t} = \overline{R}(1 - \theta_{1} - \theta_{2}) + \theta_{1}Q_{t-1} + \theta_{2}\varepsilon_{t}'\varepsilon_{t}$$
$$R_{t} = diag(Q_{t})^{-\frac{1}{2}}Q_{t}diag(Q_{t})^{-\frac{1}{2}}$$
$$L = -\frac{1}{2}\sum \left[\log|R_{t}| + \varepsilon_{t}'R_{t}\varepsilon_{t}\right]$$

Asymmetric volatilities: intuition

 Engle and Ng (1993): asymmetric impact of news on volatility.

Asymmetric correlations: intuition

 Cappiello, Engle and Sheppard (2004): asymmetric correlations to account for lower tail dependence.

Data

- Stocks (S&P500) and Bonds (10 year Treasury Notes) from August 1988 to August 2003.
- Summary statistics

	Stocks	Bonds
Annualized mean	8.64	1.98
Annualized std dev	17.2	6.15
Kurtosis	8.14	5.16

Data

- Stocks (S&P500) and Bonds (10 year Treasury Notes) from August 1988 to August 2003.
- Summary statistics

	Stocks	Bonds
Annualized mean	8.64	1.98
Annualized std dev	17.2	6.15
Kurtosis	8.14	5.16

• Average correlation is 0.06.

Data

- Stocks (S&P500) and Bonds (10 year Treasury Notes) from August 1988 to August 2003.
- Summary statistics

	Stocks	Bonds
Annualized mean	8.64	1.98
Annualized std dev	17.2	6.15
Kurtosis	8.14	5.16

- Average correlation is 0.06.
- Compare two estimators of the covariance matrix:
 - 1. Constant unconditional
 - 2. Asymmetric DCC

Conditional Correlations

Interpreting results

A number such as 105 means required excess returns are 5% greater with correct correlations.

- E.g. a 4% excess return with incorrect correlation would be a 4.2% return with correct correlations.
- With 10% required return, the value of such correlations is 50 basis points.

Value gains: DCC vs Constant

Value gains: DCC vs Constant

Diebold and Mariano univariate test

• Test for a specific $\mu = [0.16, 0.99]$:

	Sc GARCH	Diag BEKK	DCC-MR	OGARCH	DCC-Asy	Constant
Sc GARCH	-	-0.635	-2.243	13.645	-3.405	7.312
Diag BEKK	0.635	-	-1.278	14.170	-2.764	7.347
DCC-MR	2.543	1.278	-	14.179	-2.470	7.382
OGARCH	-13.645	-14.170	-14.179	-	-14.328	-10.761
DCC-Asy	3.405	2.764	2.470	14.328	-	7.493
Constant	-7.312	-7.347	-7.382	10.761	-7.493	-

Diebold and Mariano joint test

• Test for all vectors of expected returns:

	Sc GARCH	Diag BEKK	DCC-MR	OGARCH	DCC-Asy	Constant
Sc GARCH	-	-3.277	-4.095	12.314	-4.043	5.322
Diag BEKK	3.277	-	-0.427	13.139	-1.299	7.129
DCC-MR	4.095	0.427	-	13.415	0.223	7.049
OGARCH	-12.314	-13.193	-13.415	-	-14.022	-9.696
DCC-Asy	4.043	1.299	-0.223	14.022	-	6.794
Constant	-5.322	-7.129	-7.049	9.696	-6.794	-

Value gains: DCC vs Constant

- Simulate 10,000 days of the DCC model documented above.
- One investor knows the volatilities and correlations every day, Ω .
- The other only knows the unconditional volatilities and correlations, H.
- What is the gain to the informed investor?

Simulated data (Full Covariance)

Simulated data (Correlations)

Extreme correlations

 The value of right correlation information is high when correlations are extreme.

Simulated data (Correlations)

S&P500 and Dow Jones

Correlation and return structure of equity indices is very different:

- Unconditional correlations are about 0.9.
- Asymmetry is greater.
- Expected returns are probably nearly equal.

SP & Dow (Full covariance)

SP & Dow (Correlations only)

More advanced questions

Would the value of correlations information be greater in more complex problems?

- Short sale constraints will reduce the value.
- No riskless asset can have either effect.
- Multi-period objective function should increase the value of correlations.

Conclusions

- The value of accurate daily correlations is moderate (maybe 20bp). Possibly why asset allocation is done monthly and ignores covariances.
- On some days, the value is much greater.
- Additional value may flow from multi-period optimization. See Colacito and Engle (2005) in progress.