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Goal of the paper

¢ What is it worth to an investor to have a correct
covariance matrix?

¢ Can these benefits be used to statistically discriminate
between covariance matrices with real data?
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Our approach

¢ Each day, minimize portfolio variance subject to a
required return, assuming a risk free rate and allowing
short positions:

. /
min wyHy /i wy
Wt

s.t. wéut/t_l > [
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We need to estimate:
1. Covariance matrices
2. Expected returns
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Our approach

Each day, minimize portfolio variance subject to a
required return, assuming a risk free rate and allowing

short positions:
min ’UJ{LHt/t_lwt
Wt

s.t. wéut/t_l > [

We need to estimate:
1. Covariance matrices
2. Expected returns

How can we evaluate the quality of covariance matrix
forecasts without knowing expected returns?
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What expected returns?

1. Use ex-post mean returns:
© Fleming, Kirby, and Ostdiek (2001)
© Elton and Gruber (1973)
© Cumby, Figlewski and Hasbrouck (1994)
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What expected returns?

. Use ex-post mean returns:

© Fleming, Kirby, and Ostdiek (2001)

© Elton and Gruber (1973)

© Cumby, Figlewski and Hasbrouck (1994)

But expected returns are not the same as realized
mean returns.

. Minimum variance or minimum tracking error portfolio:
© Chan, Karceski, Lakonishok (1999)

But this is equivalent to assume that all asset have the
same expected return.

. They test the joint hypothesis of correct specification of
mean and variance.

. We use constant expected returns and repeat the
analysis for a number of possible vectors.
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Outline of the talk

© Proposed strategy.

© One way of estimating covariance matrices: Dynamic
Conditional Correlation (DCC).

© Results: in sample and simulations.
© More advanced questions and ongoing research.
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Solution

The solution Is

Hy 'y
Wy = 77 —1 Lo
poity

This solution always exists provided that H; is positive
definite and the required returns is nhonnegative.

But suppose that H; is not the true covariance matrix...
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Solution

¢ If Q, Is the true covariance, the minimized volatility is

ﬂ \/M/Ht_lgth_llﬁ
4o W H

| Financial Econometrics Conference - Waterloo: March 18, 2005 — p. 7/:




Solution

¢ If Q, Is the true covariance, the minimized volatility is

i _ \/M/Ht_lgth_llﬁ
4o W H

© An investor using €2, would have volatility

2
Ho Vi
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Solution

¢ If Q, Is the true covariance, the minimized volatility is

i _ \/M/Ht_lgth_lﬂ
4o W H

© An investor using €2, would have volatility

2
Ho Vi

© Itis easy to show that:

H Q
o o
Zt s U

o o
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Solution

¢ If Q, Is the true covariance, the minimized volatility is

i _ \/M/Ht_lgth_lﬂ
4o W H

© An investor using €2, would have volatility

2
Ho Vi

© Itis easy to show that:
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Value of covariance information

© The investor with the correct covariance matrix can
achieve the same volatility and a higher required

return. Setting volatilities equal:

i _ \/(M’Ht_lﬁtﬂflﬂ) (w2 ) -
s WH
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Value of covariance information

The investor with the correct covariance matrix can
achieve the same volatility and a higher required

return. Setting volatilities equal:

i _ \/(M’Ht_lﬁtﬂflﬂ) (w2 ) -
s WH

The ratio of required excess returns giving equal
volatility is always larger than 1 for any vector of
expected returns.
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Value of covariance information
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s WH

The ratio of required excess returns giving equal
volatility is always larger than 1 for any vector of
expected returns.
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Value of covariance information

The investor with the correct covariance matrix can
achieve the same volatility and a higher required

return. Setting volatilities equal:

o _ \/(“/Ht_lﬂtﬂt_lﬂ) (W% p) > 1
p! W H

The ratio of required excess returns giving equal
volatility is always larger than 1 for any vector of
expected returns.

Gains will depend upon the choice of L.

A costless mistake: if 1 is an eigenvector of QH 1
using the wrong covariance matrix is costless.
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Bivariate Example
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Bivariate Example

1 L | | | | | |
-1.5 -1 -0.5 0 0.5 1 1.5
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A costless mistake
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Proposed strategy

© For a vector of expected returns, and a conditional
covariance matrix, calculate the optimal weights and
the subsequent portfolio return.
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the subsequent portfolio return.

Choose covariance matrices that achieve lowest
portfolio variance for all relevant expected returns.
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Proposed strategy

For a vector of expected returns, and a conditional
covariance matrix, calculate the optimal weights and

the subsequent portfolio return.

Choose covariance matrices that achieve lowest
portfolio variance for all relevant expected returns.

Use the approach of Diebold and Mariano (1995) to
test that a method is significantly better than another.
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Testing the equality of two models

© Pick a vector of expected returns .
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© Pick a vector of expected returns .

© The realized variance of portfolios constructed using
estimators H} and H? is

/ 2 / 2
Ukt = (wl,k,t”) _(w2,k,t"“t)
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Testing the equality of two models

© Pick a vector of expected returns .

© The realized variance of portfolios constructed using
estimators H} and H? is

/ 2 / 2
Ukt = (wl,k,t”) _(wzk,t"“t)

¢ Diebold and Mariano (1995) test £ = 0 by least squares
using HAC standard errors:

Ukt = &+ Ekut
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Testing the equality of two models

Pick a vector of expected returns .

The realized variance of portfolios constructed using
estimators H} and H? is

/ 2 / 2
Ukt = (wl,k,t”) _(wzk,t"“t)

Diebold and Mariano (1995) test ¢ = 0 by least squares
using HAC standard errors:

Ut — f -+ Ek,ut
We also consider a weighted version of the test

/ 2 / 2
(wl,t”) — (w2,t7“t)

\/ (' Hyf ) (0 Hy ) o)

— f‘l‘ kvt
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Joint test of equality of two models

¢ Stack differences into vectors

Ut — (ul,ta “ee uK,t),

‘/t — (Ul,ta RS /UK,t)/
© Use GMM with vector HAC to estimate

U = But+cuy
% — 6@L+5v,t

¢ Under the null g, and 3, are both equal to zero.

¢ If the null is rejected we can see which way It is
rejected.

] Financial Econometrics Conference - Waterloo: March 18, 2005 — p. 13/:




Dynamic Conditional Correlation (DCC

¢ DCC model is a new type of multivariate GARCH
model that is particularly convenient for big systems.
See Engle(2002) or Engle(2004).
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Dynamic Conditional Correlation (DCC

¢ DCC model is a new type of multivariate GARCH
model that is particularly convenient for big systems.
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¢ Motivation: the conditional correlation of two returns
with mean zero is

B4 [7“1,157“2,75]

Pt =
VBl B3,
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Dynamic Conditional Correlation (DCC

¢ DCC model is a new type of multivariate GARCH
model that is particularly convenient for big systems.

See Engle(2002) or Engle(2004).

¢ Motivation: the conditional correlation of two returns
with mean zero is

B4 [7“1,157“2,75]

Pt =
VBl B3,

o If it = hi,tgz',ti with Et—l[hi,t] — hi,t1 Vi = 1, 2

B Ei 4 [51,1552,15]
Pt =
NCEEREEEN
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DCC: a two step estimation

1. Estimate volatilities for each asset and compute the
standardized residuals.
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DCC: a two step estimation
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¢ E.g. each asset follows a GARCH process

it = hi,t&',t, Eit ~iid. N(O7 1)
hiz = a+ Bhii—1+ 77"@'2,15—1
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DCC: a two step estimation

1. Estimate volatilities for each asset and compute the
standardized residuals.

E.g. each asset follows a GARCH process

it = hz‘,té?z',t, Eit ~i.i.d. N(O7 1)

Y

hiz = a+ Bhii—1+ Vrzt_1

2. Estimate the covariances between these using a ML
criterion and one of several models for the correlations.
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DCC: a two step estimation

1. Estimate volatilities for each asset and compute the
standardized residuals.

E.g. each asset follows a GARCH process

it = hz’,tgz',ta Eit ~iid. N(O7 1)
hiz = a+ Bhii—1+ 77}'2,15—1

2. Estimate the covariances between these using a ML
criterion and one of several models for the correlations.

E.g. Mean reverting DCC.:

Q: = R(1—01—0y)+0,Q; 1+ b,

Ry = diag(Qt)_%Qtdiag(Qt)_
1 /

L —5 Z [lOg |Rt| + Efthc‘:t]
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Asymmetric volatilities: intuition

¢ Engle and Ng (1993): asymmetric impact of news on
volatility.

\/

High Variance
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Asymmetric correlations: intuition

¢ Cappiello, Engle and Sheppard (2004): asymmetric
correlations to account for lower tail dependence.
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Data

Stocks (S&P500) and Bonds (10 year Treasury Notes)
from August 1988 to August 2003.

Summary statistics

Stocks | Bonds
Annualized mean 8.64 1.98
Annualized std dev | 17.2 6.15
Kurtosis 8.14 5.16
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Kurtosis 8.14 5.16

Average correlation is 0.06.
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Data

Stocks (S&P500) and Bonds (10 year Treasury Notes)
from August 1988 to August 2003.

Summary statistics

Stocks | Bonds
Annualized mean 8.64 1.98

Annualized std dev | 17.2 6.15
Kurtosis 8.14 5.16

Average correlation is 0.06.

Compare two estimators of the covariance matrix:
1. Constant - unconditional
2. Asymmetric DCC
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Conditional Correlations

0.8
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Sample average
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Interpreting results

A number such as 105 means required excess returns are
5% greater with correct correlations.

E.g. a 4% excess return with incorrect correlation
would be a 4.2% return with correct correlations.

With 10% required return, the value of such
correlations is 50 basis points.
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Value gains: DCC vs Constant

112

110

108 -

106 -

104 -

102

100

bond
stock

1.00 099 095 0.89 0.81 0.71 0.59 045 0.31 0.16  0.00 mean
0.00 0.16 0.31 045 059 0.7 0.81 0.89 095 099 1.00
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Value gains: DCC vs Constant

112 0.25
110 +

+ 0.2
108 |

+ 0.15

106 |

+ 0.1
104 +

+ 0.05
102 | I I
100 i i i | | I | | | | | | -0

bond 1.00 099 095 089 0.81 0.71 0.59 045 0.31 0.16  0.00 mean
stock 0.00 0.16 0.31 045 059 0.7 0.81 0.89 095 099 1.00
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Diebold and Mariano univariate test

© Test for a specific ;. = [0.16,0.99]:

Sc GARCH Diag BEKK DCC-MR OGARCH DCC-Asy Constant

Sc GARCH - -0.635 -2.243 13.645 -3.405 7.312
Diag BEKK 0.635 - -1.278 14.170 -2.764 7.347
DCC-MR 2.543 1.278 - 14.179 -2.470 7.382
OGARCH -13.645 -14.170 -14.179 - -14.328 -10.761
DCC-Asy 3.405 2.764 2.470 14.328 - 7.493

Constant -7.312 -7.347 -7.382 10.761 -7.493
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Diebold and Mariano joint test

¢ Test for all vectors of expected returns:

Sc GARCH Diag BEKK DCC-MR OGARCH DCC-Asy  Constant
Sc GARCH - -3.277 -4.095 12.314 -4.043 5.322
Diag BEKK 3.277 - -0.427 13.139 -1.299 7.129
DCC-MR 4.095 0.427 - 13.415 0.223 7.049
OGARCH -12.314 -13.193 -13.415 - -14.022 -9.696
DCC-Asy 4.043 1.299 -0.223 14.022 : 6.794
Constant -5.322 -7.129 -7.049 9.696 -6.794 -
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Value gains: DCC vs Constant

¢ Simulate 10,000 days of the DCC model documented
above.

© One Investor knows the volatilities and correlations
every day, ().

© The other only knows the unconditional volatilities and
correlations, H.

© What is the gain to the informed investor?
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Simulated data (Full Covariance)

110

109
108 -
107
106

105 A

104
103
102 -
101 -
100 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

bond 1.00 0.99 0.95 0.89 0.81 0.71 0.59 0.45 0.31 0.16 0.00
stock  0.00 0.16 0.31 0.45 0.59 0.71 0.81 0.89 0.95 0.99 1.00
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Simulated data (Correlations)

105

104.5

104 -

103.5 -
103 -
102.5 -
102 -
101.5 -
101 |
100.5 - I
100 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ —._ ‘

bond 1.00 0.99 0.95 0.89 0.81 0.71 0.59 0.45 0.31 0.16 0.00
stock  0.00 0.16 0.31 0.45 0.59 0.71 0.81 0.89 0.95 0.99 1.00
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Extreme correlations

© The value of right correlation information is high when
correlations are extreme.

120

118}

Efficiency gain

116}
114}
112}
110}
108 |-
106 |-
104 |-
102\
100 — ' ' ' ' ! ! ! !
088 089 09 091 092 093 094 095 096 097 098

Truep
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Simulated data (Correlations)

125

120 -

115

110

105 -

100 -

bond 1.00 0.99 0.95 0.89 0.81 0.71 0.59 0.45 0.31 0.16 0.00
stock  0.00 0.16 0.31 0.45 0.59 0.71 0.81 0.89 0.95 0.99 1.00
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S&P500 and Dow Jones

Correlation and return structure of equity indices is very
different:

¢ Unconditional correlations are about 0.9.
© Asymmetry Is greater.
© EXxpected returns are probably nearly equal.
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SP & Dow (Full covariance)

114 |

112 |

110 -
108 -
106 -
104 |
102 1
100 x x x x x x x x x ‘ ‘

S&P 1.00 0.99 0.95 0.89 0.81 0.71 0.59 0.45 0.31 0.16 0.00
Dow 0.00 0.16 0.31 0.45 0.59 0.71 0.81 0.89 0.95 0.99 1.00
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SP & Dow (Correlations only)

140

135 -

130 A

125 A

120 A

115 -

110 -

105 -

100 -

S&P 1.00 0.99 0.95 0.89 0.81 0.71 0.59 0.45 0.31 0.16 0.00
Dow 0.00 0.16 0.31 0.45 0.59 0.71 0.81 0.89 0.95 0.99 1.00
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More advanced questions

Would the value of correlations information be greater in
more complex problems?

© Short sale constraints will reduce the value.
© No riskless asset can have either effect.

© Multi-period objective function should increase the
value of correlations.
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Conclusions

The value of accurate daily correlations is moderate
(maybe 20bp). Possibly why asset allocation is done
monthly and ignores covariances.

On some days, the value is much greater.

Additional value may flow from multi-period

optimization. See Colacito and Engle (2005) in
progress.

I | Financial Econometrics Conference - Waterloo: March 18, 2005 — p. 33/




	Goal of the paper
	Our approach
	Our approach
	Our approach

	What expected returns?
	What expected returns?
	What expected returns?
	What expected returns?
	What expected returns?
	What expected returns?

	Outline of the talk
	Solution
	Solution
	Solution
	Solution
	Solution

	Value of covariance information
	Value of covariance information
	Value of covariance information
	Value of covariance information

	Bivariate Example
	Bivariate Example
	Bivariate Example
	Bivariate Example

	A costless mistake
	Proposed strategy
	Proposed strategy
	Proposed strategy

	Testing the equality of two models
	Testing the equality of two models
	Testing the equality of two models
	Testing the equality of two models

	Joint test of equality of two models
	Dynamic Conditional Correlation (DCC)
	Dynamic Conditional Correlation (DCC)
	Dynamic Conditional Correlation (DCC)

	DCC: a two step estimation
	DCC: a two step estimation
	DCC: a two step estimation
	DCC: a two step estimation

	Asymmetric volatilities: intuition
	Asymmetric correlations: intuition
	Data
	Data
	Data

	Conditional Correlations
	Interpreting results
	Value gains: DCC vs Constant
	Value gains: DCC vs Constant

	hypertarget {back}{Diebold and Mariano univariate test}
	Diebold and Mariano joint test
	Value gains: DCC vs Constant
	Simulated data (Full Covariance)
	Simulated data (Correlations)
	Extreme correlations
	Simulated data (Correlations)
	S&P500 and Dow Jones
	SP & Dow (Full covariance)

	SP & Dow (Correlations only)

	More advanced questions
	Conclusions

