

Skewness in Expected Macro Fundamentals and the Predictability of Equity Returns: Evidence and Theory

Ric Colacito, Eric Ghysels, Jinghan Meng, and Wasin Siwasarit

Á

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

• Long-Run Risks Model: time-varying expected growth rate

 \rightarrow This paper: we look at the cross-section of analysts' forecasts

- Long-Run Risks Model: time-varying expected growth rate
 - \rightarrow This paper: we look at the cross-section of analysts' forecasts
- At each point in time we look at:
 - Mean of all forecasts
 - Volatility of all forecasts
 - Skewness of all forecasts

- Long-Run Risks Model: time-varying expected growth rate
 - \rightarrow This paper: we look at the cross-section of analysts' forecasts
- At each point in time we look at:
 - Mean of all forecasts
 - Volatility of all forecasts
 - Skewness of all forecasts
- We find:
 - Evidence of persistence for all the moments
 - 2 Skewness predicts future Mean

- Long-Run Risks Model: time-varying expected growth rate
 - \rightarrow This paper: we look at the cross-section of analysts' forecasts
- At each point in time we look at:
 - Mean of all forecasts
 - Volatility of all forecasts
 - Skewness of all forecasts
- We find:
 - Evidence of persistence for all the moments
 - 2 Skewness predicts future Mean
- Questions

- Long-Run Risks Model: time-varying expected growth rate
 - \rightarrow This paper: we look at the cross-section of analysts' forecasts
- At each point in time we look at:
 - Mean of all forecasts
 - Volatility of all forecasts
 - Skewness of all forecasts
- We find:
 - Evidence of persistence for all the moments
 - 2 Skewness predicts future Mean
- Questions
 - O How much larger is the premium to compensate for the risk of time-varying moments of the distribution of expected GDP forecasts? → Bansal and Yaron (2004), Bansal, Kiku, Shaliastovich, and Yaron (2012) look at time varying means and variances

- Long-Run Risks Model: time-varying expected growth rate
 - \rightarrow This paper: we look at the cross-section of analysts' forecasts
- At each point in time we look at:
 - Mean of all forecasts
 - Volatility of all forecasts
 - Skewness of all forecasts
- We find:
 - Evidence of persistence for all the moments
 - 2 Skewness predicts future Mean
- Questions
 - How much larger is the premium to compensate for the risk of time-varying moments of the distribution of expected GDP forecasts? → Bansal and Yaron (2004), Bansal, Kiku, Shaliastovich, and Yaron (2012) look at time varving means and variances

 - What is the use of this information for forecasting stock market returns? \rightarrow Campbell and Diebold (2009) look at first two moments

A look at the data

- A look at the data
- 2 An endowment economy featuring
 - time varying distribution of expected consumption growth (mean, variance, skewness)
 - recursive preferences

A look at the data

- 2 An endowment economy featuring
 - time varying distribution of expected consumption growth (mean, variance, skewness)
 - recursive preferences
- O How large is the skewness premium?
 - Properties of the stochastic discount factor (bounds)
 - Equity risk premium from a calibrated economy

- A look at the data
- 2 An endowment economy featuring
 - time varying distribution of expected consumption growth (mean, variance, skewness)
 - recursive preferences
- O How large is the skewness premium?
 - Properties of the stochastic discount factor (bounds)
 - Equity risk premium from a calibrated economy
- Testing empirical predictions: can the distribution of expected growth rates forecast equity returns and the realized variance of equity returns?

(Analysts)

Data on Expected Real GDP/GNP growth rates

Data on Expected Real GDP/GNP growth rates

Livingston Survey:

(Analysts)

- Time series size: forecasts from 06/1946 to 06/2011, twice per year;
- Forecast horizon: 6 months and 12 months from now;
- Cross-sectional size: 19-50+ economists in each period, from 11 sectors (e.g., industry, government, banking, academia, etc).

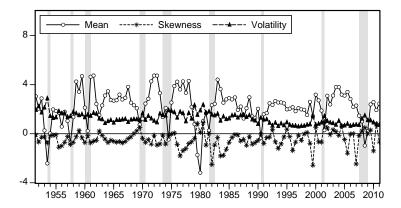
Data on Expected Real GDP/GNP growth rates

Livingston Survey:

Analysts

- Time series size: forecasts from 06/1946 to 06/2011, twice per year;
- Forecast horizon: 6 months and 12 months from now;
- Cross-sectional size: 19-50+ economists in each period, from 11 sectors (e.g., industry, government, banking, academia, etc).
- 2 Blue Chips Economic Indicators:
 - Time series size: forecasts from 09/1984 to 06/2011, every month;
 - Forecast horizon: 1, 2, up to 6 quarters ahead;
 - Cross-sectional size: 40-50 economists in each period.

Moments of Expected GDP Forecasts



5/26

Transition dynamics of conditional moments

	Mean	Volatility	Third Moment ^{1/3}
Lagged Mean	0.496 [0.070]	_	_
Lagged Volatility	_	0.886 [0.058]	_
Lagged Third Moment ^{1/3}	_	_	0.329 [0.077]

(Analysts)

Transition dynamics of conditional moments

_	Mean	Volatility	Third Moment ^{1/3}
Lagged Mean	0.480	-0.038	-0.094
	[0.056]	[0.019]	[0.055]
Lagged Volatility	0.183	0.818	-0.258
	[0.785]	[0.052]	[-0.164]
Lagged Third Moment ^{1/3}	0.302	-0.085	0.275
	[0.093]	[0.026]	[0.068]

$$U_t = (1 - \delta) \log C_t + \delta \theta \log E_t \exp\left\{\frac{U_{t+1}}{\theta}\right\}$$

where $\theta = 1/(1 - \gamma)$.

$$U_t = (1-\delta)\log C_t + \delta E_t [U_{t+1}]$$

where $\theta = 1/(1 - \gamma)$. If $\theta \to -\infty$: time additive case.

$$U_t = (1 - \delta) \log C_t + \delta \theta \log E_t \exp\left\{\frac{U_{t+1}}{\theta}\right\}$$

where $\theta = 1/(1 - \gamma)$.

$$U_t \approx (1-\delta)\log C_t + \delta E_t[U_{t+1}] + \frac{\delta}{2\theta}V_t[U_{t+1}] + \frac{\delta}{6\theta^2}E_t(U_{t+1} - E_tU_{t+1})^3 + \dots$$

where $\theta = 1/(1-\gamma)$.

$$U_t \approx (1-\delta)\log C_t + \delta E_t[U_{t+1}] + \frac{\delta}{2\theta} V_t[U_{t+1}] + \frac{\delta}{6\theta^2} E_t (U_{t+1} - E_t U_{t+1})^3 + \dots$$

where $\theta = 1/(1-\gamma)$.

Standard Expected Utility term

$$U_t \approx (1-\delta)\log C_t + \delta E_t[U_{t+1}] + \frac{\delta}{2\theta} V_t[U_{t+1}] + \frac{\delta}{6\theta^2} E_t (U_{t+1} - E_t U_{t+1})^3 + \dots$$

where $\theta = 1/(1-\gamma)$.

- Standard Expected Utility term
- Utility variance matters ($\gamma > 1 \Rightarrow \theta < 0$: agents dislike variance)

$$U_t \approx (1-\delta)\log C_t + \delta E_t[U_{t+1}] + \frac{\delta}{2\theta} V_t[U_{t+1}] + \frac{\delta}{6\theta^2} E_t (U_{t+1} - E_t U_{t+1})^3 + \dots$$

where $\theta = 1/(1-\gamma)$.

- Standard Expected Utility term
- Utility variance matters ($\gamma > 1 \Rightarrow \theta < 0$: agents dislike variance)
- Conditional Skewness matters
- Higher order conditional moments are potentially important...

• At each date t, observe the cross-section $\{E_t^i(\Delta c_{t+1})\}_{i=1}^n$

- At each date t, observe the cross-section $\{E_t^i(\Delta c_{t+1})\}_{i=1}^n$
- Assume that $E_t^i(\Delta c_{t+1}) = E_t(\Delta c_{t+1}) + \xi_t^i, \quad \forall i = \{1, \dots, n\}$

- At each date t, observe the cross-section $\{E_t^i(\Delta c_{t+1})\}_{i=1}^n$
- Assume that $E_t^i(\Delta c_{t+1}) = E_t(\Delta c_{t+1}) + \xi_t^i, \quad \forall i = \{1, \dots, n\}$
- Denote the cross sectional moments as:

- At each date t, observe the cross-section $\{E_t^i(\Delta c_{t+1})\}_{i=1}^n$
- Assume that $E_t^i(\Delta c_{t+1}) = E_t(\Delta c_{t+1}) + \xi_t^i, \quad \forall i = \{1, \dots, n\}$
- Denote the cross sectional moments as:

•
$$\widehat{E}_t^{cs}(\Delta c_{t+1}) = \frac{1}{n} \sum_{i=1}^n E_t^i(\Delta c_{t+1})$$

- At each date *t*, observe the cross-section $\{E_t^i(\Delta c_{t+1})\}_{i=1}^n$
- Assume that $E_t^i(\Delta c_{t+1}) = E_t(\Delta c_{t+1}) + \xi_t^i, \quad \forall i = \{1, \dots, n\}$
- Denote the cross sectional moments as:

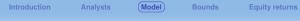
•
$$\widehat{E}_t^{cs}(\Delta c_{t+1}) = \frac{1}{n} \sum_{i=1}^n E_t^i(\Delta c_{t+1})$$

•
$$\widehat{V}_t^{cs}(\Delta c_{t+1}) = \frac{1}{n} \sum_{i=1}^n \left[E_t^i(\Delta c_{t+1}) - \widehat{E}_t^{cs}(\Delta c_{t+1}) \right]^2$$

- At each date t, observe the cross-section $\{E_t^i(\Delta c_{t+1})\}_{i=1}^n$
- Assume that $E_t^i(\Delta c_{t+1}) = E_t(\Delta c_{t+1}) + \xi_t^i, \quad \forall i = \{1, \dots, n\}$
- Denote the cross sectional moments as:

•
$$\widehat{E}_{t}^{cs}(\Delta c_{t+1}) = \frac{1}{n} \sum_{i=1}^{n} E_{t}^{i}(\Delta c_{t+1})$$

• $\widehat{V}_{t}^{cs}(\Delta c_{t+1}) = \frac{1}{n} \sum_{i=1}^{n} \left[E_{t}^{i}(\Delta c_{t+1}) - \widehat{E}_{t}^{cs}(\Delta c_{t+1}) \right]^{2}$
• $\widehat{S}_{t}^{cs}(\Delta c_{t+1}) = \frac{\frac{1}{n} \sum_{i=1}^{n} \left[E_{t}^{i}(\Delta c_{t+1}) - \widehat{E}_{t}^{cs}(\Delta c_{t+1}) \right]^{3}}{\left(\widehat{V}_{t}^{cs}(\Delta c_{t+1}) \right)^{3/2}}$



$$\Delta c_{t+1} = \underbrace{\mu_c + x_t}_{E_t[\Delta c_{t+1}]} + \sqrt{\sigma_t^c} \varepsilon_{t+1}^c$$

where

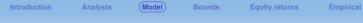
$$\begin{aligned} x_{t+1} &= \rho x_t + \varphi_e \sqrt{\sigma_t^x} \varepsilon_{t+1}^x \\ \varepsilon_{t+1}^x &\sim Skew - Normal(0, 1, v_{t+1}) \end{aligned}$$

$$\Delta c_{t+1} = \underbrace{\mu_c + x_t}_{E_t[\Delta c_{t+1}]} + \sqrt{\sigma_t^c} \varepsilon_{t+1}^c$$

where

$$\begin{aligned} x_{t+1} &= \rho x_t + \varphi_e \sqrt{\sigma_t^x} \varepsilon_{t+1}^x \\ \varepsilon_{t+1}^x &\sim Skew - Normal(0, 1, v_{t+1}) \end{aligned}$$

• Variance is time-varying: $\sigma_{t+1}^c = (1 - \rho_\sigma)\overline{\sigma}_c + \rho_\sigma \sigma_t + \sqrt{\sigma_\sigma}\xi_{t+1}^\sigma$



$$\Delta c_{t+1} = \underbrace{\mu_c + x_t}_{E_t[\Delta c_{t+1}]} + \sqrt{\sigma_t^c} \varepsilon_{t+1}^c$$

where

$$\begin{aligned} x_{t+1} &= \rho x_t + \varphi_e \sqrt{\sigma_t^x} \varepsilon_{t+1}^x \\ \varepsilon_{t+1}^x &\sim Skew - Normal(0, 1, v_{t+1}) \end{aligned}$$

- Variance is time-varying: $\sigma_{t+1}^c = (1 \rho_\sigma)\overline{\sigma}_c + \rho_\sigma \sigma_t + \sqrt{\sigma_\sigma}\xi_{t+1}^\sigma$
- Skewness is time-varying: $v_{t+1} = \rho_v v_t + \sqrt{\sigma_v} \xi_{t+1}$

$$\Delta c_{t+1} = \underbrace{\mu_c + x_t}_{E_t[\Delta c_{t+1}]} + \sqrt{\sigma_t^c} \varepsilon_{t+1}^c$$

where

$$\begin{aligned} x_{t+1} &= \rho x_t + \varphi_e \sqrt{\sigma_t^x} \varepsilon_{t+1}^x \\ \varepsilon_{t+1}^x &\sim Skew - Normal(0, 1, v_{t+1}) \end{aligned}$$

- Variance is time-varying: $\sigma_{t+1}^c = (1 \rho_\sigma)\overline{\sigma}_c + \rho_\sigma \sigma_t + \sqrt{\sigma_\sigma}\xi_{t+1}^\sigma$
- Skewness is time-varying: $v_{t+1} = \rho_v v_t + \sqrt{\sigma_v} \xi_{t+1}$
- Variance of x_t is proportional to variance of Δc_t

$$\sigma_t^{x} = \sigma_t^{c} / \underbrace{\left(1 - \frac{2}{\pi} E_t \left[\frac{v_{t+1}}{\sqrt{1 + v_{t+1}^2}}\right]^2\right)}_{Var_t[\varepsilon_{t+1}^{x}]}$$

• Conditional mean depends on all three lagged moments

$$E_t(x_{t+1}) = \rho_x x_t + \left(\frac{2}{4-\pi}\right)^{1/3} V_t(x_{t+1})^{1/2} S_t(x_{t+1})^{1/3}$$

• Conditional mean depends on all three lagged moments

$$E_t(x_{t+1}) = \rho_x x_t + \left(\frac{2}{4-\pi}\right)^{1/3} V_t(x_{t+1})^{1/2} S_t(x_{t+1})^{1/3}$$

Conditional variance is AR(1)

$$V_t(x_{t+1}) = \varphi_e^2 \sigma_t^c$$

• Conditional mean depends on all three lagged moments

$$E_t(x_{t+1}) = \rho_x x_t + \left(\frac{2}{4-\pi}\right)^{1/3} V_t(x_{t+1})^{1/2} S_t(x_{t+1})^{1/3}$$

Conditional variance is AR(1)

$$V_t(x_{t+1}) = \varphi_e^2 \sigma_t^c$$

Conditional skewness is AR(1)

$$S_t(x_{t+1})^{1/3} ~pprox ~rac{4-\pi}{2}\sqrt{rac{2}{\pi}
ho_
u
u_t}$$

γ	Risk aversion	10
δ	Subjective discount factor	0.998
μ_c	Average consumption growth	0.001
ρ_x	Autoregressive coefficient of the expected consumption growth rate x_t	0.9619
\$e	Ratio of long-run shock and short-run shock volatilities	0.05
μ_X	Location parameter of skew normal distribution of the innovations to x_t	0
$\sqrt{\sigma_\sigma}$	Conditional volatility of the variance of the short-run shock to consumption growth	$3.80 imes 10^{-6}$
ρ_{σ}	Persistence of the variance of the short-run shock to consumption growth	0.93
$\sqrt{\sigma_\nu}$	Conditional volatility of the scale parameter v of the skew normally distributed innovations to x_t	0.4696
ρ_{ν}	Persistence of the scale parameter v of skew normally distributed innovations to x_t	0.8
λ	Leverage	3

γ	Risk aversion	10
δ	Subjective discount factor	0.998
μ_c	Average consumption growth	0.001
ρ _x	Autoregressive coefficient of the expected consumption growth rate x_t	0.9619
\$\$	Ratio of long-run shock and short-run shock volatilities	0.05
μ_{x}	Location parameter of skew normal distribution of the innovations to x_t	0
$\sqrt{\sigma_\sigma}$	Conditional volatility of the variance of the short-run shock to consumption growth	$3.80 imes 10^{-6}$
ρ _σ	Persistence of the variance of the short-run shock to consumption growth	0.93
$\sqrt{\sigma_{\nu}}$	Conditional volatility of the scale parameter v of the skew normally distributed innovations to x_t	0.4696
ρ_{ν}	Persistence of the scale parameter v of skew normally distributed innovations to x_t	0.8
λ	Leverage	3

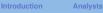
γ	Risk aversion	10
δ	Subjective discount factor	0.998
u _c	Average consumption growth	0.001
p _x	Autoregressive coefficient of the expected consumption growth rate x_t	0.9619
¢ _e	Ratio of long-run shock and short-run shock volatilities	0.05
u _x	Location parameter of skew normal distribution of the innovations to x_t	0
$\sqrt{\sigma_{\sigma}}$	Conditional volatility of the variance of the short-run shock to consumption growth	3.80×10^{-6}
οσ	Persistence of the variance of the short-run shock to consumption growth	0.93
$\sqrt{\sigma_{\nu}}$	Conditional volatility of the scale parameter v of the skew normally distributed innovations to x_t	0.4696
p_v	Persistence of the scale parameter v of skew normally distributed innovations to x_t	0.8
λ	Leverage	3

The SDF is

Analysts

$$\log M_{t+1} = \log \frac{\partial U_t / \partial C_{t+1}}{\partial U_t / \partial C_t}$$

=
$$\log \delta - \Delta c_{t+1} + \frac{U_{t+1}}{\theta} - \log E_t \exp \left\{ \frac{U_{t+1}}{\theta} \right\}$$

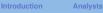


The SDF is

$$\begin{array}{ll} \log M_{t+1} &=& \log \frac{\partial U_t / \partial C_{t+1}}{\partial U_t / \partial C_t} \\ &=& \log \delta - \Delta c_{t+1} + \frac{U_{t+1}}{\theta} - \log E_t \exp\left\{\frac{U_{t+1}}{\theta}\right\} \end{array}$$

Assess the performance of the model using the HJ volatility bound

$$\sigma(M) \geq \frac{E\left[R^m - R^f\right]}{\sigma(R^m - R^f)} \frac{1}{R^f}$$



The SDF is

$$\begin{array}{ll} \log M_{t+1} &=& \log \frac{\partial U_t / \partial C_{t+1}}{\partial U_t / \partial C_t} \\ &=& \log \delta - \Delta c_{t+1} + \frac{U_{t+1}}{\theta} - \log E_t \exp\left\{\frac{U_{t+1}}{\theta}\right\} \end{array}$$

Assess the performance of the model using the HJ volatility bound

$$\sigma(M) \geq \frac{E\left[R^m - R^f\right]}{\sigma(R^m - R^f)} \frac{1}{R^f}$$

The SDF is

$$\begin{array}{ll} \log M_{t+1} &=& \log \frac{\partial U_t / \partial C_{t+1}}{\partial U_t / \partial C_t} \\ &=& \log \delta - \Delta c_{t+1} + \frac{U_{t+1}}{\theta} - \log E_t \exp\left\{\frac{U_{t+1}}{\theta}\right\} \end{array}$$

Assess the performance of the model using the HJ volatility bound

$$\sigma(M) \geq \frac{E\left[R^m - R^f\right]}{\sigma(R^m - R^f)} \frac{1}{R^f}$$

o Volatile Utility ⇒ Volatile SDF!

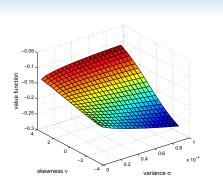
The SDF is

$$\begin{array}{ll} \log M_{t+1} &=& \log \frac{\partial U_t / \partial C_{t+1}}{\partial U_t / \partial C_t} \\ &=& \log \delta - \Delta c_{t+1} + \frac{U_{t+1}}{\theta} - \log E_t \exp\left\{\frac{U_{t+1}}{\theta}\right\} \end{array}$$

Assess the performance of the model using the HJ volatility bound

$$\sigma(M) \geq \frac{E\left[R^m - R^f\right]}{\sigma(R^m - R^f)} \frac{1}{R^f}$$

- Volatile Utility ⇒ Volatile SDF!
- How much do time-varying volatility and skewness matter?

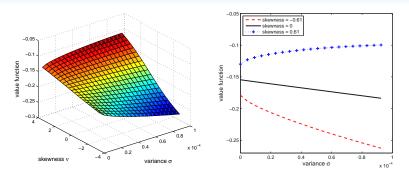


• Time-varying skewness amplifies the uncertainty of lifetime utility

Analysts Model

(Bounds)

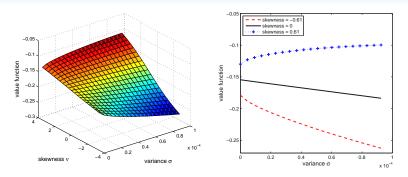
Utility Function



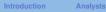
- Time-varying skewness amplifies the uncertainty of lifetime utility
- Skewness interacts with variance:
 - \rightarrow high variance is welfare increasing with positive skewness
 - \rightarrow high variance is welfare decreasing with negative skewness

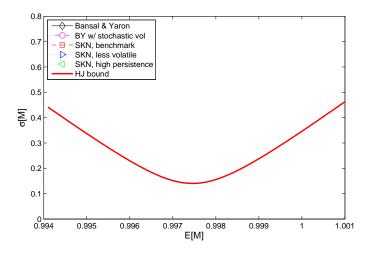
Analysts Model

Utility Function



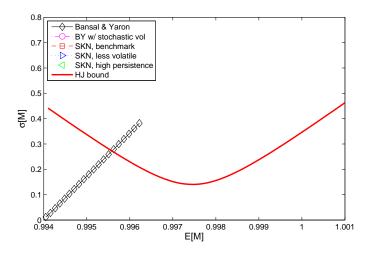
- Time-varying skewness amplifies the uncertainty of lifetime utility
- Skewness interacts with variance:
 - \rightarrow high variance is welfare increasing with positive skewness
 - \rightarrow high variance is welfare decreasing with negative skewness
- Black line is (roughly) the case of an economy with zero skewness



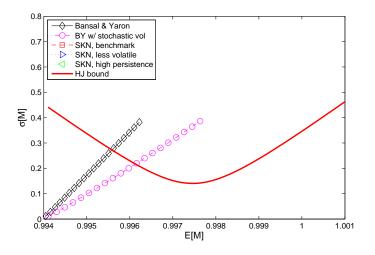


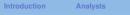
Analysts

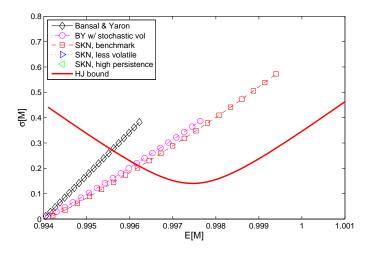
Conclusion

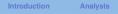


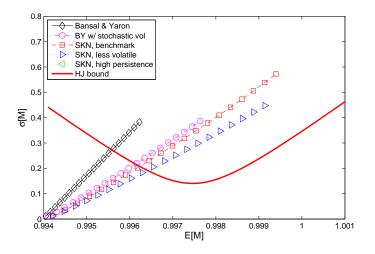


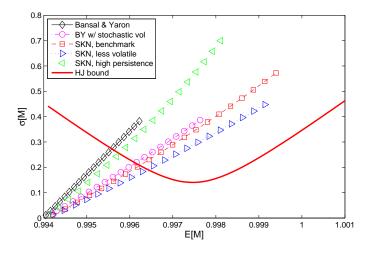












 Backus, Chernov, and Zin (2012) define the conditional entropy of the pricing kernel as:

$$L_t(M_{t+1}) = log E_t M_{t+1} - E_t \log M_{t+1}$$

• A measure of dispersion: if *M* is log-normal, then it boils down to the variance

 Backus, Chernov, and Zin (2012) define the conditional entropy of the pricing kernel as:

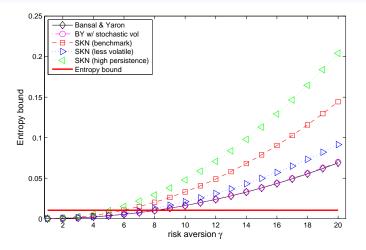
$$L_t(M_{t+1}) = log E_t M_{t+1} - E_t \log M_{t+1}$$

- A measure of dispersion: if *M* is log-normal, then it boils down to the variance
- They show that, together with the Euler equation, it leads to the entropy bound:

$$EL(M_{t+1}) \geq E(\log R_{t+1} - r_{f,t})$$

Introduction

Entropy bound (cont'd)



	Data	No Skew	Benchmark	Volatile Skew
$E[r_t^d - r_t^f]$	6.33			
$\sigma[r_t^d - r_t^f]$	19.4			
$E[r_t^f]$	1.16			
$\sigma[r_t^f]$	1.89			
E[ho/d]	3.30			
$\sigma[ho/d]$	0.31			
$AC_1[p/d]$	0.87			

	Data	No Skew	Benchmark	Volatile Skew
$E[r_t^d - r_t^f]$	6.33	2.89		
$\sigma[r_t^d - r_t^f]$	19.4	9.30		
$E[r_t^f]$	1.16	1.89		
$\sigma[r_t^f]$	1.89	1.37		
E[p/d]	3.30	4.47		
$\sigma[ho/d]$	0.31	0.09		
$AC_1[ho/d]$	0.87	0.521		

	Data	No Skew	Benchmark	Volatile Skew
$E[r_t^d - r_t^f]$	6.33	2.89	7.80	
$\sigma[r_t^d - r_t^f]$	19.4	9.30	16.0	
$E[r_t^f]$	1.16	1.89	1.89	
$\sigma[r_t^f]$	1.89	1.37	2.22	
E[p/d]	3.30	4.47	2.82	
$\sigma[ho/d]$	0.31	0.09	0.17	
$AC_1[p/d]$	0.87	0.521	0.52	

	Data	No Skew	Benchmark	Volatile Skew
$E[r_t^d - r_t^f]$	6.33	2.89	7.80	8.83
$\sigma[r_t^d - r_t^f]$	19.4	9.30	16.0	18.2
$E[r_t^f]$	1.16	1.89	1.89	1.89
$\sigma[r_t^f]$	1.89	1.37	2.22	2.44
E[p/d]	3.30	4.47	2.82	2.66
$\sigma[ho/d]$	0.31	0.09	0.17	0.19
$AC_1[p/d]$	0.87	0.521	0.52	0.50

Sharpe Ratios Consumption Volatility Consumption AC(1)

Sha	arpe Rat	tios	Con	sumption V	olatility	Co	Consumption AC(1)		
ρν				ρ _ν			ρν		
0.80	0.82	0.86	0.80	0.82	0.86	0.80	0.82	0.86	

		Sharpe Ratios		tios	Con	Consumption Volatility			Consumption AC(1)		
		ρν			ρν			ρν			
		0.80	0.82	0.86	0.80	0.82	0.86	0.80	0.82	0.86	
	0.20										
$\overline{\sigma_v}$	0.47										
	0.60										
No S	kew		36.00			2.32			0.40		

		Sharpe Ratios ρ _ν			Con	sumption Vo	Consumption AC(1)			
					ρ _ν			ρν		
		0.80	0.82	0.86	0.80	0.82	0.86	0.80	0.82	0.86
	0.20	41.00	42.19	45.50	2.48 [2.03, 2.94]	2.53 [2.03,2.94]	2.65 [2.03, 2.94]	0.45 [0.28, 0.63]	0.47 [0.28, 0.65]	0.49 [0.32,0.67]
$\sqrt{\sigma_{\nu}}$	0.47	51.62	54.40	62.27	2.88 [2.31,3.45]	3.00 [2.39,3.61]	3.28 [2.58, 3.98]	0.54 [0.38,0.71]	0.56 [0.39,0.73]	0.61 [0.45, 0.78]
	0.60	55.79	59.07	68.15	3.05 [2.44, 3.67]	3.19 [2.51,3.86]	3.50 [2.75,4.26]	0.57 [0.41,0.73]	0.59 [0.43,0.75]	0.64 [0.49,0.79]
No S	Skew		36.00			2.32			0.40	

Sharpe Ratios increase between 15% and 90%

		Sharpe Ratios ρ _ν			Cons	Consumption Volatility ρ _ν			Consumption AC(1) ρ _ν		
		0.80	0.82	0.86	0.80	0.82	0.86	0.80	0.82	0.86	
	0.20	41.00	42.19	45.50	2.48 [2.03,2.94]	2.53 [2.03,2.94]	2.65 [2.03, 2.94]	0.45 [0.28,0.63]	0.47 [0.28, 0.65]	0.49 [0.32, 0.67]	
$\sqrt{\sigma_{\nu}}$	0.47	51.62	54.40	62.27	2.88 [2.31,3.45]	3.00 [2.39,3.61]	3.28 [2.58,3.98]	0.54 [0.38,0.71]	0.56 [0.39, 0.73]	0.61 [0.45, 0.78]	
	0.60	55.79	59.07	68.15	3.05 [2.44,3.67]	3.19 [2.51,3.86]	3.50 [2.75,4.26]	0.57 [0.41,0.73]	0.59 [0.43,0.75]	0.64 [0.49,0.79]	
No S	Skew		36.00			2.32			0.40		

- Sharpe Ratios increase between 15% and 90%
- Consumption dynamics impose discipline on the model

Introduction	Analysts	Model	Bounds	Equity returns	Empirical Evidence	Conclusion
		P	Predictir	ng returns		
	M	odel				
E[gr		.051 .003]				
V[gr		.009 .003]				
S[gr		.067 .003]				
cay		-				
defa	ult	-				

term pr. -

-

DP

	Model	[1]	[2]	[3]	[4]	[5]	[6]
E[growth]	-0.051 [0.003]	-0.182 [0.079]	-	-	-0.170 [0.083]	-0.178 [0.085]	-0.172 [0.086]
V[growth]	0.009 [0.003]	-	0.093 [0.085]	-	-	0.039 [0.081]	0.034 [0.091]
S[growth]	-0.067 [0.003]	-	-	-0.104 [0.062]	-0.115 [0.061]	-0.114 [0.060]	-0.115 [0.058]
cay	-	-	-	-	-	-	0.094 [0.088]
default	-	-	-	-	-	-	-0.008 [0.069]
term pr.	-	-	-	-	-	-	0.193 [0.097]
DP	-	-	-	-	-	-	0.136 [0.129]

Livingston Data Only

	[1]	[2]	[3]	[4]	[5]	[6]
E[growth]	-0.164 [0.082]	-	-	- 0.168 [0.082]	- 0.155 [0.086]	- 0.156 [0.089]
V[growth]	-	0.102 [0.088]	-	-	0.062 [0.086]	0.082 [0.104]
S[growth]	-	-	- 0.047 [0.101]	- 0.059 [0.102]	- 0.052 [0.103]	- 0.067 [0.089]
cay	-	-	-	-	-	0.196 [0.103]
default	-	-	-	-	-	-0.007 [0.078]
term pr.	-	-	-	-	-	0.202 [0.103]
DP	-	-	-	-	-	0.125 [0.125]

Livingston (cross-sectional size > 20) + Blue Chips

	[1]	[2]	[3]	[4]	[5]	[6]
E[growth]	-0.152 [0.083]	-	-	- 0.175 [0.082]	- 0.164 [0.093]	- 0.166 [0.098]
V[growth]	-	0.102 [0.089]	-	-	0.032 [0.089]	0.025 [0.109]
S[growth]	-	-	- 0.123 [0.062]	- 0.151 [0.060]	- 0.148 [0.061]	- 0.145 [0.060]
cay	-	-	-	-	-	0.201 [0.100]
default	-	-	-	-	-	0.001 [0.085]
term pr.	-	-	-	-	-	0.181 [0.108]
DP	-	-	-	-	-	0.136 [0.126]

Bounds

Analysts

Model

Livingston + Blue Chips (with dummy for returns beyond 2% CI)

	[1]	[2]	[3]	[4]	[5]	[6]
E[growth]	- 0.166 [0.091]	-	-	- 0.194 [0.091]	- 0.160 [0.091]	- 0.161 [0.083]
V[growth]	-	0.171 [0.095]	-	-	0.100 [0.091]	0.113 [0.089]
S[growth]	-	-	- 0.161 [0.058]	- 0.191 [0.057]	- 0.180 [0.057]	- 0.176 [0.060]
cay	-	-	-	-	-	0.162 [0.083]
default	-	-	-	-	-	0.032 [0.071]
term pr.	-	-	-	-	-	0.173 [0.098]
DP	-	-	-	-	-	0.079 [0.117]

23 / 26

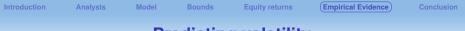
Livingston + Blue Chips (with dummy for returns beyond 10% CI)

	[1]	[2]	[3]	[4]	[5]	[6]
E[growth]	- 0.212 [0.082]	-	-	- 0.229 [0.083]	-0.194 [0.082]	- 0.173 [0.080]
V[growth]	-	0.186 [0.091]	-	-	0.107 [0.087]	0.056 [0.098]
S[growth]	-	-	- 0.090 [0.062]	- 0.123 [0.065]	-0.109 [0.064]	- 0.104 [0.067]
cay	-	-	-	-	-	0.146 [0.091]
default	-	-	-	-	-	0.068 [0.067]
term pr.	-	-	-	-	-	0.126 [0.102]
DP	-	-	-	-	-	0.164 [0.127]

24 / 26



	Model
E[growth]	0.021 [0.003]
V[growth]	0.069 [0.003]
S[growth]	0.030 [0.003]
RV_{t-1}	-



Predicting volatility

	Model	[1]	[2]	[3]	[4]	[5]
E[growth]	0.021 [0.003]	-0.132 [0.093]	-0.190 [0.103]	-	-0.140 [0.106]	-0.140 [0.106]
V[growth]	0.069 [0.003]	0.118 [0.094]	-	0.160 [0.086]	0.085 [0.081]	0.085 [0.081]
S[growth]	0.030 [0.003]	-	-0.125 [0.105]	-0.084 [0.090]	-0.110 [0.106]	-0.110 [0.106]
RV_{t-1}	-	-	-	-	-	0.080 [0.122]

• The **entire distribution** of expected GDP growth rates matters for equity returns

i

- The entire distribution of expected GDP growth rates matters for equity returns
- There is a sizeable skewness premium

- The entire distribution of expected GDP growth rates matters for equity returns
- There is a sizeable skewness premium
- Extensions
 - Average skewness is negative: results are almost unaffected, because what matters is the volatility of the skewness and its predictive power for the mean

Concluding Remarks

- The entire distribution of expected GDP growth rates matters for equity returns
- There is a sizeable skewness premium
- Extensions
 - Average skewness is negative: results are almost unaffected, because what matters is the volatility of the skewness and its predictive power for the mean
 - Cross-sectional implications: assets whose skewness of expected cash flows' forecasts is more volatile should command larger risk premia
 - \rightarrow Cross-section of US equities
 - \rightarrow Cross-section of int'l equities